Molecular Diffusion in Gases: Diffusive + Convective Mass Transport
2026-01-07
Fick’s 1st law of diffusion \[ J_{Az}^{*} = -D_{AB}\dfrac{d c_A}{dz} \]
Diffusion and convection \[ N_{A} = J_{Az}^{*} + c_A v_m \]
Governing equation for binary mixture system \[ N_{A} = -c_T D_{AB} \dfrac{d x_A}{dz} + x_A(N_A + N_B) \]
We will learn how to solve this equation in this lecture!
After today’s lecture, you will be able to:
Diffusion flux of A in B, z-direction follows:
\[ J^*_{Az} = - D_{AB}\,\frac{d c_A}{d z} \]


Search for any youtube video with “diffusion experiment dye”
Can we verify whether the scenario seen is Ficknian diffusion?
Length \(L\) traveled in time \(t\):
What is typical \(D_{AB}\) in a liquid?
- Often \(D_{AB}\sim 10^{-9}\) to \(10^{-10}\,\mathrm{m^2/s}\)
Assuming \(D_{AB} = 10^{-10} \mathrm{m^2/s}\) \(v_{m} = 10^{-3} \mathrm{m/s}\)
Diffusion
Convection
\[ [\mathrm{In}] - [\mathrm{Out}] + [\mathrm{Generate}] = [\mathrm{Accumulation}] \]
The common way of expressing the governing equation is
\[\begin{align} N_{A} &= -c_T D_{AB} \dfrac{d x_A}{dz} + x_A(N_A + N_B) \\ N_{B} &= -c_T D_{BA} \dfrac{d x_B}{dz} + x_B(N_A + N_B) \end{align}\]How can we solve these?
Equimolar Counter Diffusion (EMCD)
Assumption
Example
Diffusion with Stagnant B
Assumption
Example
General Case
Assumption
Example
Relation in EMCD gives:
\[\begin{align} c_T D_{BA} \dfrac{d x_B}{d z} &= -c_T D_{AB} \dfrac{d x_A}{d z} \end{align}\]Since \(x_A + x_B = 1\), we have \(D_{AB} = D_{BA}\)
Assume S.S., constant \(D_{AB}\) and integrate from \(z_1\) to \(z_2\)
\[\begin{align} \int_{c_{A1}}^{c_{A2}} d c_A &= -\frac{N_A}{D_{AB}} \int_{z_1}^{z_2} d z \\ c_{A2} - c_{A1} &= -\frac{N_A}{D_{AB}}(z_2 - z_1) \\ \end{align}\] \[\begin{align} \boxed{ N_A = \frac{D_{AB}}{(z_2 - z_1)}(c_{A1} - c_{A2}) } \end{align}\]For ideal gas:
\[\begin{align} \boxed{ N_A = \frac{D_{AB}}{RT(z_2 - z_1)}(p_{A1} - p_{A2}) } \end{align}\]Definition: stagnant species B means zero molar flux in the lab frame: \[ N_B = 0 \]
But diffusion in B phase still occurs!
The governing equation becomes:
\[\begin{align} N_A &= -c_TD_{AB}\dfrac{d x_A}{dz} + x_A N_A \\ N_A(1 - x_A) &= -c_TD_{AB}\dfrac{d x_A}{dz} \end{align}\]We again do an integration by separating variables:
\[\begin{align} \frac{d x_A}{1-x_A} &= -\frac{N_A}{c_TD_{AB}}\,dz \\ \int_{x_{A1}}^{x_{A2}} \frac{d x_A}{1-x_A} &= -\frac{N_A}{c_TD_{AB}}\int_{z_1}^{z_2} dz \\ \left[-\ln(1-x_A)\right]_{x_{A1}}^{x_{A2}} &= -\frac{N_A}{c_TD_{AB}}(z_2-z_1) \\ \ln\!\left(\frac{1-x_{A1}}{1-x_{A2}}\right) &= -\frac{N_A}{c_TD_{AB}}(z_2-z_1) \end{align}\] \[\begin{align} \boxed{ N_A = \frac{c_TD_{AB}}{(z_2-z_1)} \ln\!\left(\frac{1-x_{A2}}{1-x_{A1}}\right) } \end{align}\]Historically, engineers liked to write the stagnant B equation using linear terms.
\[\begin{align} \ln\!\left(\frac{p_T-p_{A2}}{p_T-p_{A1}}\right) &= \ln\!\left(\frac{p_{B2}}{p_{B1}}\right) \\ (p_{B2} - p_{B1})\ln\!\left(\frac{p_T-p_{A2}}{p_T-p_{A1}}\right) &= \ln\!\left(\frac{p_{B2}}{p_{B1}}\right) (p_{A1} - p_{A2}) \\ \ln\!\left(\frac{p_T-p_{A2}}{p_T-p_{A1}}\right) &= \ln\!\left(\frac{p_{B2}}{p_{B1}}\right) \left( \frac{p_{A1} - p_{A2}}{p_{B2} - p_{B1}} \right) \end{align}\]Define \(p_{Bm} = \dfrac{p_{B2} - p_{B1}}{\ln\!(p_{B2}/p_{B1})}\)
We get
\[\begin{align} N_A = \frac{D_{AB}}{RT(z_2-z_1)} \frac{p_T}{p_{Bm}}(p_{A1}-p_{A2}) \end{align}\]Can you solve the profile for \(x_A(z)\)?
Next lecture: we remove simplifying constraints and discuss the general case