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Recap

• Governing equation for diffusion binary mixture gas systems

𝑁𝐴 = −𝑐𝑇𝐷𝐴𝐵
𝑑𝑥𝐴
𝑑𝑧

+ 𝑥𝐴(𝑁𝐴 + 𝑁𝐵)

• Case 1: equimolar counter diffusion (EMCD)

– 𝑁𝐴 + 𝑁𝐵 = 0

– 𝑁𝐴 = −𝑐𝑇𝐷𝐴𝐵
𝑑𝑥𝐴
𝑑𝑧

– Linear 𝑥𝐴, 𝑐𝐴 and 𝑝𝐴 profiles
– 𝑁𝐴 = 𝐷𝐴𝐵

𝑅𝑇 (𝑧2 − 𝑧1)
(𝑝𝐴1 − 𝑝𝐴2)

• Case 2: diffusion through stagnant B

– 𝑁𝐵 = 0

– 𝑁𝐴(1 − 𝑥𝐴) = −𝑐𝑇𝐷𝐴𝐵
𝑑𝑥𝐴
𝑑𝑧

– Usually in log-mean pressure form
– 𝑁𝐴 = 𝐷𝐴𝐵

𝑅𝑇 (𝑧2 − 𝑧1)
𝑝𝑇

𝑝𝐵𝑚
(𝑝𝐴1 − 𝑝𝐴2)

Office Hour

• Wednesday 11:15 - 12:15
• DICE 12-245
• Can take place in other meeting rooms if many people are attending
• Please use seminar time wisely for assignment questions!
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Learning Outcomes

After today’s lecture, you will be able to:

• Derive general solution for mass transport in binary gas mixture
• Define the conditions for each cases we have studied so far
• Formulate governing equations for various case systems
• Apply general solution to defined problem
• Analyze pressure / concentration profile

Deriving the General Solution (I)

General case for steady state (S.S) transport

• 𝑁𝐵 = 𝑘𝑁𝐴 (𝑘 is a constant. why?)
• Only 𝑥𝐴 (or 𝑐𝐴, 𝑝𝐴) dependent on 𝑧, not 𝑁𝐴 or 𝑁𝐵 � separation of variables!

𝑁𝐴 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵) = −𝐷𝐴𝐵𝑐𝑇
𝑑𝑥𝐴
𝑑𝑧

(1)

𝑑𝑧
𝐷𝐴𝐵𝑐𝑇

= − 𝑑𝑥𝐴
𝑁𝐴 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵)

(2)

∫
𝑧2

𝑧1

𝑑𝑧
𝐷𝐴𝐵𝑐𝑇

= ∫
𝑥𝐴2

𝑥𝐴1

− 𝑑𝑥𝐴
𝑁𝐴 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵)

(3)

Deriving the General Solution (II)

• L.H.S.

∫
𝑧2

𝑧1

𝑑𝑧
𝐷𝐴𝐵𝑐𝑇

= (𝑧2 − 𝑧1)
𝐷𝐴𝐵𝑐𝑇

• R.H.S.

Using substitution 𝑢 = 𝑁𝐴 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵), 𝑑𝑢 = −(𝑁𝐴 + 𝑁𝐵) 𝑑𝑥𝐴

∫
𝑥𝐴2

𝑥𝐴1

− 𝑑𝑥𝐴
𝑁𝐴 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵)

= − ⋅ − 1
𝑁𝐴 + 𝑁𝐵

ln[𝑁𝐴 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵)] ∣
𝑥𝐴2

𝑥𝐴1

(4)

= 1
𝑁𝐴 + 𝑁𝐵

ln[𝑁𝐴 − 𝑥𝐴2(𝑁𝐴 + 𝑁𝐵)
𝑁𝐴 − 𝑥𝐴1(𝑁𝐴 + 𝑁𝐵)

] (5)
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Deriving the General Solution (III)

We want to solve for 𝑁𝐴

(𝑧2 − 𝑧1)
𝑐𝑇𝐷𝐴𝐵

= 1
𝑁𝐴 + 𝑁𝐵

ln[𝑁𝐴 − 𝑥𝐴2(𝑁𝐴 + 𝑁𝐵)
𝑁𝐴 − 𝑥𝐴1(𝑁𝐴 + 𝑁𝐵)

] (6)

𝑁𝐴 = 𝑐𝑇𝐷𝐴𝐵
(𝑧2 − 𝑧1)

𝑁𝐴
𝑁𝐴 + 𝑁𝐵

ln[𝑁𝐴 − 𝑥𝐴2(𝑁𝐴 + 𝑁𝐵)
𝑁𝐴 − 𝑥𝐴1(𝑁𝐴 + 𝑁𝐵)

] (7)

We can gather all 𝑁𝐴/(𝑁𝐴 + 𝑁𝐵) in the R.H.S since it’s a constant

𝑁𝐴 = 𝑐𝑇𝐷𝐴𝐵
(𝑧2 − 𝑧1)

( 𝑁𝐴
𝑁𝐴 + 𝑁𝐵

) % ln[
𝑁𝐴

𝑁𝐴+𝑁𝐵
− 𝑥𝐴2

𝑁𝐴
𝑁𝐴+𝑁𝐵

− 𝑥𝐴1
] (8)

• This is the general solution for binary gas transport.
• Also works for 𝑁𝐴 = −𝑁𝐵 (EMCD), with a little bit trick

Relation Between Gen. Sol. and EMCD

The general solution is not applicable 𝑁𝐵 = −𝑁𝐴, but we can prove 𝑁𝐵/𝑁𝐴 → −1 reduces to
the EMCD equation.

• Let 𝑠 = 𝑁𝐴/(𝑁𝐴 + 𝑁𝐵), so 𝑠 → ∞ when 𝑁𝐵/𝑁𝐴 → −1
• Use the Taylor expansion that lim𝑢→0 ln(1 − 𝑢) = −𝑢

lim
𝑠→∞

( 𝑁𝐴
𝑁𝐴 + 𝑁𝐵

) ln[
𝑁𝐴

𝑁𝐴+𝑁𝐵
− 𝑥𝐴2

𝑁𝐴
𝑁𝐴+𝑁𝐵

− 𝑥𝐴1
] = 𝑠 ln(𝑠 − 𝑥2

𝑠 − 𝑥1
) (9)

= 𝑠 ln(1 − 𝑥2/𝑠
1 − 𝑥1/𝑠

) (10)

= 𝑠[(−𝑥2
𝑠

) − (−𝑥1
𝑠

)] (11)

= 𝑥1 − 𝑥2 (12)

This is the EMCD result!
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Three Forms of Gass Mass Transport Equations (I)

In 𝑐𝐴 form

• Case 1: EMCD

– 𝑁𝐴 + 𝑁𝐵 = 0
𝑁𝐴 = 𝐷𝐴𝐵

(𝑧2 − 𝑧1)
(𝑐𝐴1 − 𝑐𝐴2)

• Case 2: stagnant B

– 𝑁𝐵 = 0

𝑁𝐴 = 𝐷𝐴𝐵𝑐𝑇
(𝑧2 − 𝑧1)

ln(
1 − 𝑐𝐴2

𝑐𝑇

1 − 𝑐𝐴1
𝑐𝑇

)

• General solution

– 𝑁𝐵 = 𝑘𝑁𝐴

𝑁𝐴 = 𝐷𝐴𝐵𝑐𝑇
(𝑧2 − 𝑧1)

𝑁𝐴
𝑁𝐴 + 𝑁𝐵

ln[
𝑁𝐴

𝑁𝐴+𝑁𝐵
− 𝑐𝐴2

𝑐𝑇
𝑁𝐴

𝑁𝐴+𝑁𝐵
− 𝑐𝐴1

𝑐𝑇

]

Three Forms of Gass Mass Transport Equations (II)

In 𝑥𝐴 form

• Case 1: EMCD

– 𝑁𝐴 + 𝑁𝐵 = 0
𝑁𝐴 = 𝐷𝐴𝐵𝑐𝑇

(𝑧2 − 𝑧1)
(𝑥𝐴1 − 𝑥𝐴2)

• Case 2: stagnant B

– 𝑁𝐵 = 0

𝑁𝐴 = 𝐷𝐴𝐵𝑐𝑇
(𝑧2 − 𝑧1)

ln(1 − 𝑥𝐴2
1 − 𝑥𝐴1

)

• General solution

– 𝑁𝐵 = 𝜆𝑁𝐴
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𝑁𝐴 = 𝐷𝐴𝐵𝑐𝑇
(𝑧2 − 𝑧1)

𝑁𝐴
𝑁𝐴 + 𝑁𝐵

ln[
𝑁𝐴

𝑁𝐴+𝑁𝐵
− 𝑥𝐴2

𝑁𝐴
𝑁𝐴+𝑁𝐵

− 𝑥𝐴1
]

Three Forms of Gass Mass Transport Equations (III)

In 𝑝𝐴 form (ideal gas)

• Case 1: EMCD

– 𝑁𝐴 + 𝑁𝐵 = 0
𝑁𝐴 = 𝐷𝐴𝐵

𝑅𝑇 (𝑧2 − 𝑧1)
(𝑝𝐴1 − 𝑝𝐴2)

• Case 2: stagnant B

– 𝑁𝐵 = 0

𝑁𝐴 = 𝐷𝐴𝐵𝑝𝑇
𝑅𝑇 (𝑧2 − 𝑧1)

ln(𝑝𝑇 − 𝑝𝐴2
𝑝𝑇 − 𝑝𝐴1

)

• General solution

– 𝑁𝐵 = 𝜆𝑁𝐴

𝑁𝐴 = 𝐷𝐴𝐵𝑝𝑇
𝑅𝑇 (𝑧2 − 𝑧1)

𝑁𝐴
𝑁𝐴 + 𝑁𝐵

ln[
𝑁𝐴

𝑁𝐴+𝑁𝐵
− 𝑥𝐴2

𝑁𝐴
𝑁𝐴+𝑁𝐵

− 𝑥𝐴1
]

General Solution – 𝑥𝐴(𝑧) Profile

In all the cases we study the S.S. condition:

𝑑𝑁𝐴
𝑑𝑧

= 0

For the general case 𝑠 = 𝑁𝐴/(𝑁𝐴 + 𝑁𝐵), we have

𝑑𝑁𝐴
𝑑𝑧

= 𝑑
𝑑𝑧

[𝐷𝐴𝐵𝑐𝑇
𝑠 − 𝑥𝐴

𝑑𝑥𝐴
𝑑𝑧

] = 0 (13)

𝐷𝐴𝐵𝑐𝑇
𝑠 − 𝑥𝐴

𝑑𝑥𝐴
𝑑𝑧

= Const (14)
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𝑥𝐴(𝑧) has a general solution with exponential form (with 𝐾1 and 𝐾2 being constants)

𝑥𝐴 = 𝑠 − 𝐾1𝑒𝐾2𝑧 (15)

𝑥𝐴(𝑧) Profile

Notes on the Relation Between 𝑁𝐴 and 𝑁𝐵 (1)

Using steady state condition, we need to know relation between 𝑁𝐴 and 𝑁𝐵 before solving the
general EQ.

It depends on the system setup and mass balance.

Let’s consider the same chemical reaction of hydrogen dissociation by a solid catalst

H2 (𝐴, gas) → 2H∗ (𝐵, gas) (16)

• Case 1: reaction through a solid catalyst at bottom of a tube

– The flux of A and B have opposite signs
– 𝑁𝐵 = −2𝑁𝐴

Notes on the Relation Between 𝑁𝐴 and 𝑁𝐵 (2)

• Case 2: gas flow through a solid catalyst inside a tube

– The flux of A and B have the same sign
– 𝑁𝐵 = 2𝑁𝐴

Take home question: - How do the flux directions affect the general solution?
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Measuring Diffusivity 𝐷𝐴𝐵 In Gases

• Several experimental methods exist for gases, evaporated liquid and sublimated solids
(see Geankoplis Ch 6.2E)

• We will introduce the two-bulb method for gases
• Typical setup see Duncan & Toor AIChE J. 1962, 8, 38-41
• Which case should we apply?

Two-Bulb Experiment: Conditions

Conditions for the two-bulb experiment

• Initially, pure A in bulb 1 and pure B and bulb 2
• 𝑡 = 0, the valve is opened slowly to minimize convection
• 𝑡 = 𝑡𝑒, the valve is closed and the composition in 1 and 2 are analyzed
• The valve open time is much shorter than 𝑡2 − 𝑡1
• The tube is a very thin capillary � no convection
• Constant 𝑝𝑇 and 𝑇 throughout experiment

Two-Bulb Experiment: Pseudo Steady State

We can apply:

• EMCD condition (no convection)
• Pseudo-steady state (P.S.S) assumption

– At each time step, we assume 𝑁𝐴 or 𝐽 ∗
𝐴𝑧 is constant (linear 𝑐𝐴 profile)

– But net 𝑁𝐴 flux accumulates A molecules in bulb 2
– 𝑐𝐴 in bulb 2 changes over time
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Two-Bulb Experiment: Governing Equations

We use the mass balance of the system

[Mass In] = [Accumulation]

𝑆 ⋅ 𝐽 ∗
𝐴𝑧 = 𝑉2

𝑑𝑐𝐴2
𝑑𝑡

𝐷𝐴𝐵
𝑐𝐴1 − 𝑐𝐴2

𝐿
⋅ 𝑆 = 𝑉2

𝑑𝑐𝐴2
𝑑𝑡

Since the total pressure 𝑝𝑇 is constant, the average concentration of 𝑐𝐴 in the system, 𝑐𝐴,𝑎𝑣 is
also constant

𝑉𝑇𝑐𝐴,𝑎𝑣 = (𝑉1 + 𝑉2)𝑐𝐴,𝑎𝑣

= 𝑉1𝑐𝐴1(𝑡 = 0) + 𝑉2𝑐𝐴2(𝑡 = 0)
= 𝑉1𝑐𝐴1(𝑡 ≠ 0) + 𝑉2𝑐𝐴2(𝑡 ≠ 0)

Two-Bulb Experiment: Solutions

We are interested in 𝑐𝐴2, so substitute 𝑐𝐴1 with relation to 𝑐𝐴,𝑎𝑣:

𝑐𝐴1 =
𝑉𝑇𝑐𝐴,𝑎𝑣 − 𝑉2𝑐𝐴2

𝑉1

After the substitution, rearrangement and integration we get:

ln[
𝑐𝐴,𝑎𝑣 − 𝑐𝐴2(𝑡 = 𝑡𝑒)
𝑐𝐴,𝑎𝑣 − 𝑐𝐴2(𝑡 = 0)

] = −𝐷𝐴𝐵𝑉𝑇𝑆
𝑉1𝑉2𝐿

⋅ 𝑡

We can extract 𝐷𝐴𝐵 usingt the slope of the plot!
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Some Typical Diffusivity Measurements

1

Summary

• General solution for 𝑁𝐵 = 𝑘𝑁𝐴

1Geankoplis Table 6.2-1
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• Like stagnant B case, general solution take a logarithm form for 𝑁𝐴
• When 𝑥𝐴1 and 𝑥𝐴2

are determined, the flux 𝑁𝐴 is controlled by the relation between 𝑁𝐵
and 𝑁𝐴

• The ratio between 𝑁𝐵 and 𝑁𝐴 depends on the system and setup
• Diffusivity 𝐷𝐴𝐵 can be determined by EMCD through two-bulb setup

Preview of Next Class: Theories for predicting 𝐷𝐴𝐵

• Kinetic theory

𝐷𝐴𝐵 = 1
3

𝑢𝜆

• Chapman-Enskog theory

𝐷𝐴𝐵 ∝ 𝑇 3
2

𝑃
( 1

𝑚𝐴
+ 1

𝑚𝐵
)

1
2

• Fuller method

𝐷𝐴𝐵 ∝ 𝑇 1.75

𝑃
( 1

𝑚𝐴
+ 1

𝑚𝐵
)

1
2
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