

CHE 318 Lecture 06

Steady State Mass Transfer – Other Geometries

Dr. Tian Tian

2026-01-16

Recap

- Diffusion in liquid and solid
 - Much slower than gas (D_{AB} orders of magnitudes smaller)
 - Theories to predict D_{AB} in liquid (Stokes-Einstein, Wilke-Chang)
 - Effective diffusivity in solid (void fraction ; tortuosity)
- Solving N_A in liquid
 - EMCD: rare case
 - Stgnant B: approximating x_{Bm}
 - Calculating c_{av} concentration
- Solving N_A in solid (thin membrane permeability)
 - Use of solubility S
 - Permeability $P_M = SD_{AB}$

Learning Outcomes

After today's lecture, you will be able to:

- **Identify** the difference between diffusion in various geometries
- **Describe** the approximations used for simplifying the soluton for N_A
- **Recall** the reason to choose stagnant B solution for spherical diffusion
- **Solve** pseudo-steady state diffusion problem
- **Analyze** solutions of P.S.S solution and calculate diffusivity through experiment

Examples for Diffusion in Liquid and Solid

Example 1: gas diffusion through liquid film

Adapted from Geankoplis Problem 6.3-2

Diffusion of Ammonia in an Aqueous Solution. An ammonia (A)-water (B) solution at 278 K and 4.0 mm thick is in contact at one surface with an organic liquid at this interface. The concentration of ammonia in the organic phase is held constant and is such that the equilibrium concentration of ammonia in the water at this surface is 2.0 wt % ammonia (density of aqueous solution 991.7 kg/m³) and the concentration of ammonia in water at the other end of the film 4.0 mm away is 10 wt % (density 961.7 kg/m³). Water and the organic are insoluble in each other. The diffusion coefficient of NH₃ in water is 1.24×10^{-9} m²/s.

- At steady state, calculate the flux N_A in kg mol/s · m²
- Calculate the flux N_B . Explain.

Example 1: solutions

See [handwritten notes](#) for step-by-step solutions.

Tip

1. Determine the type of system if water-organic layer is inpenetratable (answer question b first)
2. Refere to [Lecture 1](#) for conversion between wt%, molar fraction and concentration.

Answer:

- $N_A = 1.52 \times 10^6$ kg mol · m⁻² · s⁻¹
- $N_B = 0$ (diffusion through stagnant film)

Example 2: diffusion through solid film (solubility)

Adapted from Geankoplis Problem 6.5-1

A flat plug 30 mm thick having an area of 4.0×10^{-4} m² and made of vulcanized rubber is used for closing an opening in a container. The gas CO₂ at 25 °C and 2.0 atm pressure is inside the container. Calculate the total leakage or diffusion of CO₂ through the plug to the outside in kg mol CO₂/s at steady state. Assume that the partial pressure of CO₂ outside is zero. From Barrer (B5) the solubility of the CO₂ gas is 0.90 m³ gas (at STP of 0°C and 1 atm) per m³ rubber per atm pressure of CO₂. The diffusivity is 0.11×10^{-9} m²/s.

Example 2: solution

Tip

1. Notice the unit for symbols when applying $c_A = SP_A/(22.414)$
2. What unit should **total leakage** have?

Answer:

- a. Total leakage rate $1.178 \times 10^{-13} \text{ kg mol} \cdot \text{s}^{-1}$

Example 3: use of permeability

Adapted from Geankoplis Problem 6.5-3

The gas hydrogen is diffusing through a sheet of vulcanized rubber 20 mm thick at 25 °C. The partial pressure of H₂ is 1.5 atm inside and 0 outside. Using the data from Table 6.5-1 (see below), calculate the following:

- a. The diffusivity D_{AB} from the permeability P_M and solubility S , and compare with the value in the table.
- b. The flux N_A of H₂ at steady state.

Table 6.5-1. Diffusivities and Permeabilities in Solids

Solute (A)	Solid (B)	T (K)	D_{AB} , Diffusion Coefficient [m^2/s]	Solubility, S [$\frac{\text{m}^3 \text{solute(STP)}}{\text{m}^3 \text{solid} \cdot \text{atm}}$]	Permeability, PM [$\frac{\text{m}^3 \text{solute(STP)}}{\text{s} \cdot \text{m}^2 \cdot \text{atm}/\text{m}}$]	Ref.
H ₂	Vulcanized rubber	298	0.85(10^{-9})	0.040	0.342(10^{-10})	(B5)

Example 3: solution

Answer:

- a. Use $D_{AB} = P_M/S$ (note the unit)
- b. $N_A = 1.144 \times 10^{-10} \text{ kg mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$

Solving Diffusion Through Varying Area

Diffusion Through Varying Cross-Sectional Area

Steady state mass balance

Many industrial applications involve 1D transport with variable area $A(z)$, with mass balance:

$$[\text{In}] - [\text{Out}] = 0 \quad (1)$$

$$N_{A1}A_1 - N_{A2}A_2 = 0 \quad (2)$$

Define the **total molar flow rate** of A:

$$\bar{N}_A = N_A A(z)$$

At steady state: - \bar{N}_A is constant - N_A varies with position if $A(z)$ (or $A(r)$) varies

Applications of Variable-Area Diffusion

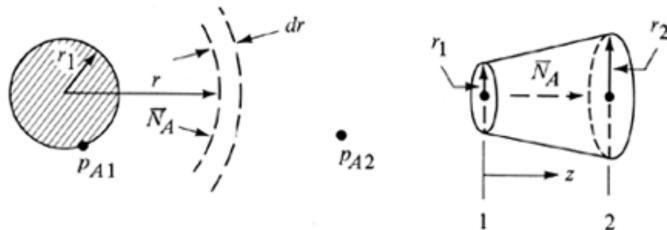


Figure 6.2-3. Diffusion through a varying cross-sectional area: (a) from a sphere to a surrounding medium, (b) through a circular conduit that is tapered uniformly.

This framework can be used to solve diffusion through:

- Sphere
- Cylinder
- Tube with varying diameter
- Any system with a known area function $A = A(z)$ or $A = A(r)$

Key ideas

- Do **not** solve as simple 1D Cartesian diffusion
- Geometry enters through $A(z)$
- Flux adjusts to maintain constant \bar{N}_A

Summary

- Solving various examples in liquid and gas diffusion systems
- Use of weight %, log-mean molar ratio, solubility and permeability