

CHE 318 Lecture 14

Mass Transfer Coefficients (II)

Dr. Tian Tian

2026-02-04

Recap

- Introduction to mass transfer coefficients
- Link between mass transfer coefficient and diffusivity
- Introduction to boundary concentration problem

Learning Outcomes

After today's lecture, you will be able to:

- Remember the flux equations using mass transfer coefficient in different phases
- Recall the motivation of using mass transfer coefficient
- Analyze mass transfer coefficients' units
- Distinguish between mass transfer coefficients in different forms

Realistic Interfacial Concentration Profiles

At the boundary, it is often convenient to use the equilibrium concentration ratio between gas (c_i) and liquid (c_{Li}). This constant, often called the **equilibrium distribution coefficient**, is defined as:

$$K = \frac{[\text{Conc. at gas side}]}{[\text{Conc. at liquid side}]} \quad (1)$$

$$= \frac{c_i}{c_{Li}} \quad (2)$$

- Similarity: Henry's law ($H = \frac{p_{\text{gas}}}{c_{\text{aq}}}$), remember in gas $p_{\text{gas}} = c_{\text{gas}}RT$

- We have already seen similar concepts in solubility in liquid / solid diffusion equations!
- K can be a value range from 0 to ∞ what does that mean?

Interfacial Concentration Profile For Different K

- The interfacial concentration values depend on the value of K !
- What else determines the interfacial balance? matching of interfacial fluxes N_A at both sides!

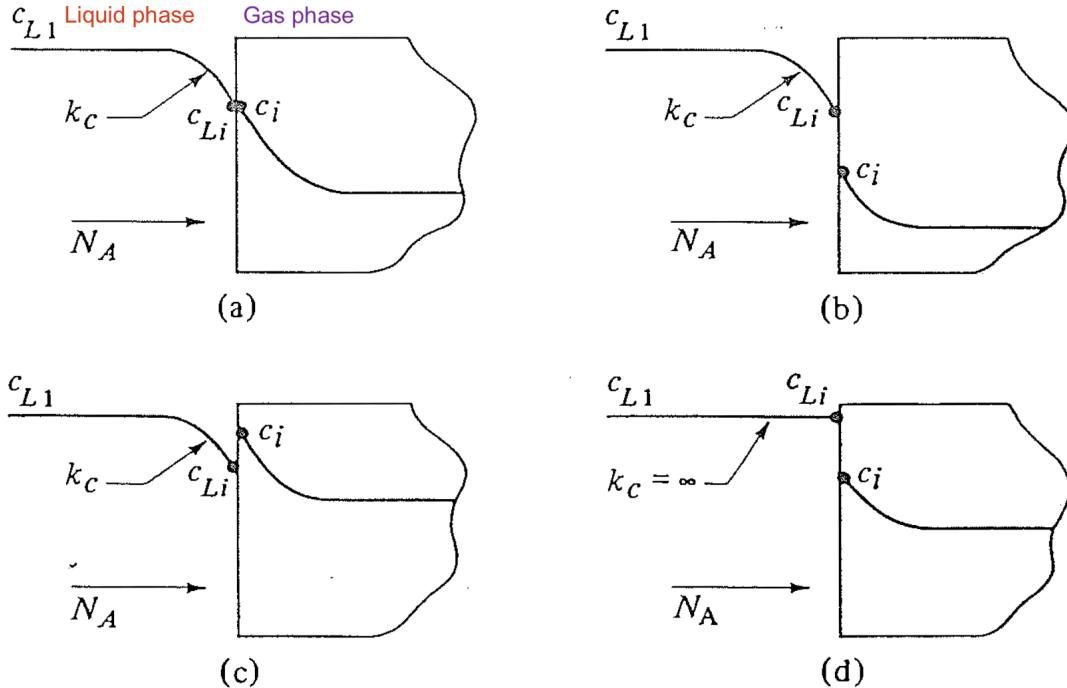


Figure 1: Geankoplis Figure 7.1.3

Match of Interfacial Fluxes

At equilibrium, if there is no resistance when transferring A between the interface, what is the mass balance equation?

$$[\text{In}]|_{\text{left}} - [\text{Out}]|_{\text{right}} + [\text{Gen}]|_{\text{interface}} = [\text{Acc}]|_{\text{interface}} \quad (3)$$

$$N_A|_{\text{left}} = N_A|_{\text{right}} \quad (4)$$

How do we model N_A in each phase?

- May be a combination of diffusion and convection
- Fluid velocity at interface may be turbulent (hard to model)
- In general we use the phenomenal relation [Flux] = [Driving Force]/[Resistance]

General Flux Equation For Convective Transport Regime

- The driving force is the concentration difference “bulk concentration” and “interfacial concentration”
- The resistance is lumped into one coefficient k'_c , **mass transfer coefficient**.

$$N_A = k'_c(c_{L,b} - c_{L,i}) \quad (5)$$

- k'_c is inversely related to the resistance.
- k'_c means driving force is concentration & convection term is EMCD-like
- The unit of k'_c ? $\text{m} \cdot \text{s}^{-1}$
- k'_c can be ∞ ! No transfer resistance inside the bulk phase

Where Does k'_c Come From (I)?

Simplified view: transport resistance of A from bulk to the interface occurs inside an interfacial film with thickness δ . We can write N_A at steady state using already known results

- Case 1: EMCD / diffusion-controlled / dilute transport in liquid

$$N_A = \boxed{\frac{D_{AB}}{\delta}} (c_{L,b} - c_{L,i}) \quad (6)$$

$$= k'_c(c_{L,b} - c_{L,i}) \quad (7)$$

- Case 2: transport in stagnant film with non-negligible convection

$$N_A = \boxed{\frac{D_{AB}}{\delta(1 - \frac{c}{c_T})}} (c_{L,b} - c_{L,i}) \quad (8)$$

$$= k'_c \frac{1}{x_{Bm}} (c_{L,b} - c_{L,i}) \quad (9)$$

$$= k_c (c_{L,b} - c_{L,i}) \quad (10)$$

- Can be written both by k'_c or k_c terms
- One can expect k_c contain the $1/x_{Bm}$ term!

Where Does k_c Come From (II)?

The mass transfer coefficient k_c is even valid for systems with effective D_{AB} !

- Case 3: mass transfer in porous solid materials

$$N_A = \left[\frac{\epsilon D_{AB}}{\tau \delta} \right] (c_{L,b} - c_{L,i}) \quad (11)$$

$$= k'_c (c_{L,b} - c_{L,i}) \quad (12)$$

- Case 4: turbulent mass transfer

The turbulence in the fluid contributes to an additional term ϵ_m in diffusion terms

$$N_A = \left[\frac{D_{AB} + \epsilon_m}{\delta} \right] (c_{L,b} - c_{L,i}) \quad (13)$$

$$= k'_c (c_{L,b} - c_{L,i}) \quad (14)$$

- ϵ_m is the “Eddie diffusivity” (correction to D_{AB} due to turbulence)
- General case for ϵ_m is non-trivial to solve!

Implications of Mass Transfer Coefficient k'_c

- Really convenient to use!
- In reality, k'_c is not a physics-based quantity, it depends on system / condition
- $k'_c \propto D_{AB}^n$ in realistic systems
- We will discuss about different theories that explains the relation between k'_c and D_{AB} (penetration theory, film theory, boundary theory) in coming weeks

Balance Equations At Interfaces

We now have 2 equations to determine the interfacial concentrations!

1. Equilibrium concentration distribution

$$K = \frac{c_{g,i}}{c_{L,i}} \quad (15)$$

2. Flux matching

$$N_A|_{\text{liq}} = N_A|_{\text{gas}} \quad (16)$$

$$k'_{c,\text{liq}}(c_{L,b} - c_{L,i}) = k'_{c,\text{gas}}(c_{g,i} - c_{g,b}) \quad (17)$$

We can solve $c_{L,i}$ and $c_{g,i}$ given information about:

- Bulk concentrations $c_{L,b}$, $c_{g,b}$
- Equilibrium distribution coefficient K
- Mass transfer coefficients k_c in each phase

Demonstration of Mixed Boundary Conditions

Mass Transfer Coefficient In Different Forms

When using k to express flux, we have the **same form** (*Geankoplis Table 7.2.1*)

- Flux equations for EMCD

$$\text{Gases: } N_A = k'_c(c_{A1} - c_{A2}) = k'_G(p_{A1} - p_{A2}) = k'_y(y_{A1} - y_{A2}) \quad (18)$$

$$\text{Liquids: } N_A = k'_c(c_{A1} - c_{A2}) = k'_L(c_{A1} - c_{A2}) = k'_x(x_{A1} - x_{A2}) \quad (19)$$

- Flux equations for diffusion through stagnant B

$$\text{Gases: } N_A = k_c(c_{A1} - c_{A2}) = k_G(p_{A1} - p_{A2}) = k_y(y_{A1} - y_{A2}) \quad (20)$$

$$\text{Liquids: } N_A = k_c(c_{A1} - c_{A2}) = k_L(c_{A1} - c_{A2}) = k_x(x_{A1} - x_{A2}) \quad (21)$$

But:

- k'_c and k_c are two different coefficients
- k'_c , k'_L , k'_G have different units

Naming Convention and Units

- Superscript: EMCD $k'_{\text{driving force}}$; Convective / stagnant B $k_{\text{driving force}}$

Phase / Driving force	Concentra- tion c_A	Partial pressure p_A	Mole fraction(gas y_A , liquid x_A)
Gas phase	k_c, k'_c	k_G, k'_G	k_y, k'_y
Liquid phase	k_c, k'_c	—	k_x, k'_x
Liquid (alt. form)	k_L, k'_L	—	—
Unit of k	$\text{m} \cdot \text{s}^{-1}$	$\frac{\text{kg mol}}{\text{s} \cdot \text{m}^2 \cdot \text{Pa}}$	$\frac{\text{kg mol}}{\text{s} \cdot \text{m}^2 \cdot \text{mol frac}}$

Conversions Between Mass Transfer Coefficients

Gas phase

$$k'_c c_T = k'_c \frac{p_T}{RT} = k_c \frac{p_{Bm}}{RT} \quad (22)$$

$$= k'_G p_T = k_G p_{Bm} \quad (23)$$

$$= k'_y = k_y y_{Bm} \quad (24)$$

$$= k_c y_{Bm} c_T = k_G y_{Bm} p_T \quad (25)$$

- p : total pressure
- p_{Bm} : log-mean partial pressure of inert B
- y_{Bm} : log-mean mole fraction of B
- $c_T = p_T/(RT)$

Liquid phase

$$k'_c c = k'_L c = k_L x_{Bm} c \quad (26)$$

$$= k'_L \frac{\rho}{M} = k'_x = k_x x_{Bm} \quad (27)$$

- ρ : liquid density
- M : molecular weight
- x_{Bm} : log-mean mole fraction of solvent B

Summary

In this lecture, we talked about

- The difficulty of studying boundary problems in mass transfer
- The rise of equilibrium distribution coefficient K and mass transfer coefficient k
- Link between mass transfer coefficient k and transfer layer

What To Learn Next

The concept of mass transfer coefficient k is both beautiful and ugly.

- We **gain** the simplicity of expressing flux equations using simple formula,
- We **lose** physical understanding about its origin in many systems

In next lectures, we will see:

- How to use mass transfer coefficients for different phases (gas, liquid, solid)
- How convective fluid transport is expressed using coefficients
- How to perform mass transfer analysis based on transfer coefficients