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Learning Outcomes

After today’s lecture, you will be able to:

e Recall the nature behind dimensionless numbers
e Describe how to correlate mass transfer behaviour with dimensionless numbers
e Understand the usage of dimensionless numbers in different geometries

Recap: Boundary Layer Theory

The global mass transfer coefficient in a tube:
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e Npg.: Reynolds number
e Ng.: Schmidt number

Why Do We Need These Dimensionless Numbers?

o Expressing fluxes using k coefficients are easy
o But do we need to measure k for each system specifically?

— Of course NO!

e We can correlate the values of k measured in different geometries, velocities using
dimensionless numbers
o Similar treatment exists in heat and momentum (fluid) transfer



Dimensionless Numbers In Mass Transfer

Scale of effect 1
el 1 form: N,upe =
eneral form: N . Scale of Effect 2

e Schmidt number (ratio between momentum diffusivity and molecular diffusivity)
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o Sherwood number (ratio between convective mass transfer and molecular mass transfer)
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« Reynolds number (ratio between kinetic vs viscous forces of fluid flow)

e L: characteristic length of system
 Location specific Ny, , also used

How Are k. Correlated By Dimensionless Numbers?

o Idea: mass transfer in flowing fluid described by v, p, u, ¢, D 45 and geometry (charac-
teristic length L)

o The combinations of these properties —> dimensionless number groups (Ng., Ngp, Nge)

e The Chilton-Colburn j-factor analog has most successful use in mass transfer
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o fis the Fanning Friction Factor (can be found in table)



General Procedure To Calculate £,

Use

. Calculate Reynolds number N, from fluid properties + geometry

. Determine flow regime (liquid)

Np. <2100 — laminar flow
Npg, > 2100 — turbulent flow

. Evaluate friction factor f

Laminar flow:

Turbulent flow:
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. Compute mass-transfer j-factor

. Obtain mass-transfer coefficient

of Empirical Mass Transfer Laws

In many systems, flux and / or concentration profiles become hard to have simple form
Luckily we can simplify typical mass transfer problems as different geometries

Cyliner / Pipe

— Parallel plates

— Flow around sphere
— Packed bed

We will show a few case studies for different geometries
Dimensionless numbers (Ng,, Ng,., Ng;) help determine governing equations



Case 1: Mass Transfer for Flow Inside Pipes

e Usually use the Linton & Sherwood chart
 Valid for gas / liquid in both laminar & turbulent regimes

Flow Inside Pipes: Solution Procedure

e Governing dimensionless quantity:
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e If gas wuse the “rodlike flow” line
o If liquid, distinguish 2 cases

— parabolic flow (Np, < 2100; TVZPL > 400)

— turbulent flow (Ng, > 2100; 0.6 < Ng,. < 3000)

Flow Inside Pipes: Solution For Liquid

Parabolic flow

2
CAT s 55 [W }_3
Ca,i —CAs DyppL

e c4: exit concentration

e Chp s Ca s inlet & surface concentration

o W: flow rate in (kg/s)

e kI can be calculated by j,

Turbulent flow
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o Similar to the j, analog
o Just need Ny, and Ng, to determine &,
¢ Characteristic length D is pipe diameter!

Case 2: Flow Past Parallel Plates

e Can be used for gases or evaporation of liquid

Distinguished between laminar & turbulent flow

o Np, regime cutoff different in gas & liquid!

. — Characteristic length L: length of plate in flow direction

Flow Past Parallel Plates: Results
Laminar flow (N, < 15,000)
jp = 0.664N02
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o This follows our derivation of boundary layer theory
Turbulent flow

« Gas: $15,000 < N_{Re}< 300,000 $

jp = 0.036 N7
« Liquid: 600 < Ng, < 50,000

Jp = 0.99]\7;{2;2

(19)



Case 3: Flow Past Single Sphere

o Frequent geometry in particle solutions

e Low Reynolds regime solution for stagnant diffusion on spherical surface

« High Reynolds regime correct Ng; and back calculate k.,

Flow Past Single Sphere: Results

Low Reynolds (Np, < 2)
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e Sherwood number: Ng;, = 2
High Reynolds (Ng, > 2)

¢ Gas:

Ngj, = 2+ 0.552N%53 N /P
0.6 < Ng, < 2.7 Np, < 48000

o Liquid:

Ng, =2+ 0.95N%S N3 Ny < 2000
Ng;, = 0.347TN%62N /3. 2000 < Np, < 17000

o Back calculate k. = Ng, DﬁB
p



Case 4: Mass Transfer for Packed Beds

e Very common geometry for chemical engineering

— Adsorption and desorption through solid particles (gases and liquids)
— Catalytic processes with very large surface area

e Geometry characteristics: void fraction e:

void space void space

 total space  void space + solid space

— Typically 0.3 <e < 0.5
— Void fraction is difficult to measure experimentally

Correlation Equations In Packed Bed

Correlation 1, applicable to:

e gase with 10 < Np, < 10,000
e liquid with 10 < N, < 1500
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e D,: (average) particle diameter
e v’: superficial velocity in the tube without packing

Correlation Equations In Packed Bed (I1)

Correlation 2, applicable to:

« liquid with 0.0016 < N, < 55, 165 < Ng, < 70000
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e liquid with 55 < Np, < 1500, 165 < Ng, < 10690
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Correlation Equations In Packed Bed (1)

Correlation 3, applicable to fluidized beds

e 10 < Np, <4000 (gas & liquid)
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e 1 < Np, <10 (liquid only)
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Packed Bed Calculation Steps

Known value from operational column: e, V, (total volume), D,, Dyp, p, p, ete.
Depend on the operational range, calculate Np,., Ngc choose the equation for jp
Obtain £, from j, value

Calculate flux N4

Estimate effective area A, inside the columne N, = A ;N4

Cu

Caveats In Packed Bed Problems (1)

« Estimate the effective area?

— First calculate the effective surface area per volume a then A,

a= 6(1D_ ) (35)
Acpp=aVy (36)



Caveats In Packed Bed Problems (2)

e Use log-mean driving force correction

NA :AeffNA (37)
(CA,Z’ —cCa1) — <CA,z' —Ca2)
o Aeffkc In (ca,i—ca1) (38)
(CA,i_CAZ)
where
¢ ¢4, surface concentration
* C41,Cao: in- and outlet concentrations
Caveats In Packed Bed Problems (3)
o Mass-flow balance
Ny = ANy (39)
=Vi(caa —can) (40)

where V'is the volumetric flow rate.

These equations will give rise to solving the flow in packed bed problem.

Summary

¢ Dimensionless numbers can be used to correlate mass transfer problems in different flow
rate, dimension etc

o Typically, start with a known geometry (pipe? parallel plate? sphere? packed bed?)

o Find the correlation with dimensionless numbers Ng,, Ng,

e Calculate the final mass transfer rate
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