

CHE 318 Lecture 16

Dimensionless Numbers In Mass Transfer

Dr. Tian Tian

2026-02-11

Learning Outcomes

After today's lecture, you will be able to:

- Recall the nature behind dimensionless numbers
- Describe how to correlate mass transfer behaviour with dimensionless numbers
- Understand the usage of dimensionless numbers in different geometries

Recap: Boundary Layer Theory

The global mass transfer coefficient in a tube:

$$k'_c = \frac{0.664 D_{AB}}{L} N_{Re}^{0.5} N_{Sc}^{1/3} \quad (1)$$

- N_{Re} : Reynolds number
- N_{Sc} : Schmidt number

Why Do We Need These Dimensionless Numbers?

- Expressing fluxes using k coefficients are easy
- But do we need to measure k for each system specifically?
 - Of course **NO!**
- We can correlate the values of k measured in different geometries, velocities using **dimensionless numbers**
- Similar treatment exists in heat and momentum (fluid) transfer

Dimensionless Numbers In Mass Transfer

- **General form:** $N_{\text{name}} = \frac{\text{Scale of effect 1}}{\text{Scale of Effect 2}}$
- **Schmidt number** (ratio between momentum diffusivity and molecular diffusivity)

$$N_{\text{Sc}} = \frac{\mu}{\rho D_{AB}} \quad (2)$$

- **Sherwood number** (ratio between convective mass transfer and molecular mass transfer)

$$N_{\text{Sh}} = \frac{k'_c L}{D_{AB}} \quad (3)$$

- **Reynolds number** (ratio between kinetic vs viscous forces of fluid flow)

$$N_{\text{Re}} = \frac{Lv\rho}{\mu} \quad (4)$$

- L : characteristic length of system
- Location specific $N_{\text{Re},x}$ also used

How Are k'_c Correlated By Dimensionless Numbers?

- Idea: mass transfer in flowing fluid described by v , ρ , μ , c , D_{AB} and geometry (characteristic length L)
- The combinations of these properties \rightarrow dimensionless number groups (N_{Sc} , N_{Sh} , N_{Re})
- The Chilton-Colburn j -factor analog has most successful use in mass transfer

$$j_D = f/2 \quad (5)$$

$$= \frac{k'_c}{v_{av}} (N_{\text{Sc}})^{2/3} \quad (6)$$

$$= \left[\frac{k'_c L}{D_{AB}} \right] \left[\frac{\rho D_{AB}}{\mu} \right] \left[\frac{\mu}{Lv_{av}\rho} \right] (N_{\text{Sc}})^{2/3} \quad (7)$$

$$= N_{\text{Sh}} N_{\text{Sc}}^{-1} N_{\text{Re}}^{-1} (N_{\text{Sc}})^{2/3} \quad (8)$$

$$= \frac{N_{\text{Sh}}}{N_{\text{Re}} N_{\text{Sc}}^{1/3}} \quad (9)$$

- f is the Fanning Friction Factor (can be found in table)

General Procedure To Calculate k'_c

1. Calculate Reynolds number N_{Re} from fluid properties + geometry
2. Determine flow regime (liquid)
 - $N_{Re} < 2100 \rightarrow$ laminar flow
 - $N_{Re} \geq 2100 \rightarrow$ turbulent flow
3. Evaluate friction factor f
 - Laminar flow:

$$f = \frac{16}{N_{Re}}$$

- Turbulent flow:

$$f = \frac{\tau_s}{\frac{1}{2} \rho v^2}, \quad \tau_s = \frac{\Delta P_f \pi R^2}{2 \pi R \Delta L}$$

4. Compute mass-transfer j -factor

$$j_D = \frac{f}{2}$$

5. Obtain mass-transfer coefficient

$$k'_c = j_D v_{av} N_{Sc}^{-2/3}$$

Use of Empirical Mass Transfer Laws

- In many systems, flux and / or concentration profiles become hard to have simple form
- Luckily we can simplify typical mass transfer problems as different geometries
 - Cylinder / Pipe
 - Parallel plates
 - Flow around sphere
 - Packed bed
- We will show a few case studies for different geometries
- Dimensionless numbers (N_{Re} , N_{Sc} , N_{Sh}) help determine governing equations

Case 1: Mass Transfer for Flow Inside Pipes

- Usually use the Linton & Sherwood chart
- Valid for gas / liquid in both laminar & turbulent regimes

Flow Inside Pipes: Solution Procedure

- Governing dimensionless quantity:

$$\frac{W}{D_{AB}\rho L} = N_{Re} N_{Sc} \frac{D}{L} \frac{\pi}{4} \quad (10)$$

$$= \frac{[\text{Total Forced Flow}](\text{kg/s})}{[\text{Total Diffusive Flow}](\text{kg/s})} \quad (11)$$

- If gas use the “rodlike flow” line
- If liquid, distinguish 2 cases
 - parabolic flow ($N_{Re} < 2100$; $\frac{W}{D_{AB}\rho L} > 400$)
 - turbulent flow ($N_{Re} > 2100$; $0.6 < N_{Sc} < 3000$)

Flow Inside Pipes: Solution For Liquid

Parabolic flow

$$\frac{c_A - c_{A,s}}{c_{A,i} - c_{A,s}} = 5.5 \left[\frac{W}{D_{AB} \rho L} \right]^{-\frac{2}{3}} \quad (12)$$

- c_A : exit concentration
- $c_{A,i}, c_{A,s}$: inlet & surface concentration
- W : flow rate in (kg/s)
- k'_c can be calculated by j_D

Turbulent flow

$$N_{Sh} = k'_c \left(\frac{D}{D_{AB}} \right) \quad (13)$$

$$= \frac{k_c p_{BM}}{P} \left(\frac{D}{D_{AB}} \right) \quad (14)$$

$$= 0.023 \left(\frac{\rho D v}{\mu} \right)^{0.83} \left(\frac{\mu}{\rho D_{AB}} \right)^{0.33} \quad (15)$$

$$= 0.023 N_{Re}^{0.83} N_{Sc}^{0.33} \quad (16)$$

- Similar to the j_D analog
- Just need N_{Re} and N_{Sc} to determine k'_c
- Characteristic length D is pipe diameter!

Case 2: Flow Past Parallel Plates

- Can be used for gases or evaporation of liquid
- Distinguished between laminar & turbulent flow
- N_{Re} regime cutoff different in gas & liquid!
- – Characteristic length L : length of plate in flow direction

Flow Past Parallel Plates: Results

Laminar flow ($N_{Re} < 15,000$)

$$j_D = 0.664 N_{Re,L}^{-0.5} \quad (17)$$

$$\frac{k'_c L}{D_{AB}} = 0.664 N_{Re,L}^{0.5} N_{Sc}^{1/3} \quad (18)$$

- This follows our derivation of boundary layer theory

Turbulent flow

- Gas: $15,000 < N_{Re} < 300,000$ \$

$$j_D = 0.036 N_{Re,L}^{-0.2} \quad (19)$$

- Liquid: $600 < N_{Re} < 50,000$

$$j_D = 0.99 N_{Re,L}^{-0.5} \quad (20)$$

Case 3: Flow Past Single Sphere

- Frequent geometry in particle solutions
- Low Reynolds regime solution for stagnant diffusion on spherical surface
- High Reynolds regime correct N_{Sh} and back calculate k'_c

Flow Past Single Sphere: Results

Low Reynolds ($N_{Re} < 2$)

$$N_A = \left[\frac{2D_{AB}}{D_p} \right] (c_{A1} - c_{A2}) \quad (21)$$

$$= k_c (c_{A1} - c_{A2}) \quad (22)$$

$$= \frac{k'_c}{x_{Bm}} (c_{A1} - c_{A2}) \quad (23)$$

(24)

- For $x_{Bm} \approx 1$, we have:

$$k'_c = \frac{2D_{AB}}{D_p}$$

- Sherwood number: $N_{Sh} = 2$

High Reynolds ($N_{Re} > 2$)

- Gas:

$$N_{Sh} = 2 + 0.552 N_{Re}^{0.53} N_{Sc}^{1/3} \quad (25)$$

$$0.6 < N_{Sc} < 2.7 \quad N_{Re} < 48000 \quad (26)$$

- Liquid:

$$N_{Sh} = 2 + 0.95 N_{Re}^{0.5} N_{Sc}^{1/3}; \quad N_{Re} < 2000 \quad (27)$$

$$N_{Sh} = 0.347 N_{Re}^{0.62} N_{Sc}^{1/3}; \quad 2000 < N_{Re} < 17000 \quad (28)$$

- Back calculate $k'_c = N_{Sh} \frac{D_{AB}}{D_p}$

Case 4: Mass Transfer for Packed Beds

- Very common geometry for chemical engineering
 - Adsorption and desorption through solid particles (gases and liquids)
 - Catalytic processes with very large surface area
- Geometry characteristics: void fraction ε :

$$\varepsilon = \frac{\text{void space}}{\text{total space}} = \frac{\text{void space}}{\text{void space} + \text{solid space}}$$
 - Typically $0.3 < \varepsilon < 0.5$
 - Void fraction is difficult to measure experimentally

Correlation Equations In Packed Bed

Correlation 1, applicable to:

- gase with $10 < N_{Re} < 10,000$
- liquid with $10 < N_{Re} < 1500$

$$j_D = j_H = \frac{0.4548}{\varepsilon} N_{Re}^{(} - 0.4069 \quad (29)$$

$$N_{Re} = \frac{D_p v' \rho}{\mu} \quad (30)$$

- D_p : (average) particle diameter
- v' : superficial velocity in the tube without packing

Correlation Equations In Packed Bed (II)

Correlation 2, applicable to:

- liquid with $0.0016 < N_{Re} < 55, 165 < N_{Sc} < 70000$

$$j_D = \frac{1.09}{\varepsilon} N_{Re}^{(} - 2/3 \quad (31)$$

- liquid with $55 < N_{Re} < 1500, 165 < N_{Sc} < 10690$

$$j_D = \frac{0.250}{\varepsilon} N_{Re}^{(} - 0.31 \quad (32)$$

Correlation Equations In Packed Bed (III)

Correlation 3, applicable to fluidized beds

- $10 < N_{Re} < 4000$ (gas & liquid)

$$j_D = \frac{0.4548}{\varepsilon} N_{Re}^{\frac{1}{2}} - 0.4069 \quad (33)$$

- $1 < N_{Re} < 10$ (liquid only)

$$j_D = \frac{1.1068}{\varepsilon} N_{Re}^{\frac{1}{2}} - 0.72 \quad (34)$$

Packed Bed Calculation Steps

1. Known value from operational column: ε , V_b (total volume), D_p , D_{AB} , μ , ρ , etc.
2. Depend on the operational range, calculate N_{Re} , N_{Sc} choose the equation for j_D
3. Obtain k_c from j_D value
4. Calculate flux N_A
5. Estimate effective area A_{eff} inside the column $\bar{N}_A = A_{eff} N_A$

Caveats In Packed Bed Problems (1)

- Estimate the effective area?
 - First calculate the effective surface area per volume a then A_{eff}

$$a = \frac{6(1 - \varepsilon)}{D_p} \quad (35)$$

$$A_{eff} = a V_b \quad (36)$$

Caveats In Packed Bed Problems (2)

- Use log-mean driving force correction

$$\bar{N}_A = A_{eff} N_A \quad (37)$$

$$= A_{eff} k_c \frac{(c_{A,i} - c_{A1}) - (c_{A,i} - c_{A2})}{\ln \frac{(c_{A,i} - c_{A1})}{(c_{A,i} - c_{A2})}} \quad (38)$$

where

- $c_{A,i}$: surface concentration
- c_{A1}, c_{A2} : in- and outlet concentrations

Caveats In Packed Bed Problems (3)

- Mass-flow balance

$$\bar{N}_A = A_{eff} N_A \quad (39)$$

$$= V(c_{A2} - c_{A1}) \quad (40)$$

where V is the volumetric flow rate.

These equations will give rise to solving the flow in packed bed problem.

Summary

- Dimensionless numbers can be used to correlate mass transfer problems in different flow rate, dimension etc
- Typically, start with a known geometry (pipe? parallel plate? sphere? packed bed?)
- Find the correlation with dimensionless numbers N_{Re} , N_{Sc}
- Calculate the final mass transfer rate