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Learning Outcomes

After today’s lecture, you will be able to:

• Recall the nature behind dimensionless numbers
• Describe how to correlate mass transfer behaviour with dimensionless numbers
• Understand the usage of dimensionless numbers in different geometries

Recap: Boundary Layer Theory

The global mass transfer coefficient in a tube:

𝑘′
𝑐 = 0.664𝐷𝐴𝐵

𝐿
𝑁0.5

𝑅𝑒 𝑁1/3
𝑆𝑐 (1)

• 𝑁𝑅𝑒: Reynolds number
• 𝑁𝑆𝑐: Schmidt number

Why Do We Need These Dimensionless Numbers?

• Expressing fluxes using 𝑘 coefficients are easy
• But do we need to measure 𝑘 for each system specifically?

– Of course NO!

• We can correlate the values of 𝑘 measured in different geometries, velocities using
dimensionless numbers

• Similar treatment exists in heat and momentum (fluid) transfer
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Dimensionless Numbers In Mass Transfer

• General form: 𝑁name = Scale of effect 1
Scale of Effect 2

• Schmidt number (ratio between momentum diffusivity and molecular diffusivity)

𝑁Sc = 𝜇
𝜌𝐷𝐴𝐵

(2)

• Sherwood number (ratio between convective mass transfer and molecular mass transfer)

𝑁Sh = 𝑘′
𝑐𝐿

𝐷𝐴𝐵
(3)

• Reynolds number (ratio between kinetic vs viscous forces of fluid flow)

𝑁Re = 𝐿𝑣𝜌
𝜇

(4)

• 𝐿: characteristic length of system
• Location specific 𝑁Re,𝑥 also used

How Are 𝑘′
𝑐 Correlated By Dimensionless Numbers?

• Idea: mass transfer in flowing fluid described by 𝑣, 𝜌, 𝜇, 𝑐, 𝐷𝐴𝐵 and geometry (charac-
teristic length 𝐿)

• The combinations of these properties –> dimensionless number groups (𝑁Sc, 𝑁Sh, 𝑁Re)
• The Chilton-Colburn 𝑗-factor analog has most successful use in mass transfer

𝑗𝐷 = 𝑓/2 (5)

= 𝑘′
𝑐

𝑣𝑎𝑣
(𝑁Sc)2/3 (6)

= 𝑘′
𝑐𝐿

𝐷𝐴𝐵

𝜌𝐷𝐴𝐵
𝜇

𝜇
𝐿𝑣𝑎𝑣𝜌

(𝑁sc)2/3 (7)

= 𝑁Sh𝑁−1
Sc 𝑁−1

Re (𝑁sc)2/3 (8)

= 𝑁Sh

𝑁Re𝑁
1/3
Sc

(9)

• 𝑓 is the Fanning Friction Factor (can be found in table)
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General Procedure To Calculate 𝑘′
𝑐

1. Calculate Reynolds number 𝑁𝑅𝑒 from fluid properties + geometry

2. Determine flow regime (liquid)

• 𝑁𝑅𝑒 < 2100 → laminar flow
• 𝑁𝑅𝑒 ≥ 2100 → turbulent flow

3. Evaluate friction factor 𝑓

• Laminar flow:

𝑓 = 16
𝑁𝑅𝑒

• Turbulent flow:

𝑓 = 𝜏𝑠
1
2𝜌𝑣2 , 𝜏𝑠 =

Δ𝑃𝑓 𝜋𝑅2

2𝜋𝑅 Δ𝐿

4. Compute mass-transfer 𝑗-factor

𝑗𝐷 = 𝑓
2

5. Obtain mass-transfer coefficient

𝑘′
𝑐 = 𝑗𝐷 𝑣𝑎𝑣 𝑁−2/3

𝑆𝑐

Use of Empirical Mass Transfer Laws

• In many systems, flux and / or concentration profiles become hard to have simple form
• Luckily we can simplify typical mass transfer problems as different geometries

– Cyliner / Pipe
– Parallel plates
– Flow around sphere
– Packed bed

• We will show a few case studies for different geometries
• Dimensionless numbers (𝑁𝑅𝑒, 𝑁𝑆𝑐, 𝑁𝑆ℎ) help determine governing equations
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Case 1: Mass Transfer for Flow Inside Pipes

• Usually use the Linton & Sherwood chart
• Valid for gas / liquid in both laminar & turbulent regimes

Flow Inside Pipes: Solution Procedure

• Governing dimensionless quantity:

𝑊
𝐷𝐴𝐵𝜌𝐿

= 𝑁𝑅𝑒𝑁𝑆𝑐
𝐷
𝐿

𝜋
4

(10)

= [Total Forced Flow](kg/s)
[Total Diffusive Flow](kg/s)

(11)

• If gas � use the “rodlike flow” line
• If liquid, distinguish 2 cases

– parabolic flow (𝑁𝑅𝑒 < 2100; 𝑊
𝐷𝐴𝐵𝜌𝐿 > 400)

– turbulent flow (𝑁𝑅𝑒 > 2100; 0.6 < 𝑁𝑆𝑐 < 3000)

Flow Inside Pipes: Solution For Liquid

Parabolic flow

𝑐𝐴 − 𝑐𝐴,𝑠

𝑐𝐴,𝑖 − 𝑐𝐴,𝑠
= 5.5 [ 𝑊

𝐷𝐴𝐵 𝜌 𝐿
]

− 2
3

(12)

• 𝑐𝐴: exit concentration

• 𝑐𝐴,𝑖, 𝑐𝐴,𝑠: inlet & surface concentration

• 𝑊: flow rate in (kg/s)

• 𝑘′
𝑐 can be calculated by 𝑗𝐷

Turbulent flow

4



𝑁𝑆ℎ = 𝑘′
𝑐 ( 𝐷

𝐷𝐴𝐵
) (13)

= 𝑘𝑐 𝑝𝐵𝑀
𝑃

( 𝐷
𝐷𝐴𝐵

) (14)

= 0.023 (𝜌𝐷𝑣
𝜇

)
0.83

( 𝜇
𝜌𝐷𝐴𝐵

)
0.33

(15)

= 0.023 𝑁0.83
𝑅𝑒 𝑁0.33

𝑆𝑐 (16)

• Similar to the 𝑗𝐷 analog
• Just need 𝑁𝑅𝑒 and 𝑁𝑆𝑐 to determine 𝑘′

𝑐
• Characteristic length 𝐷 is pipe diameter!

Case 2: Flow Past Parallel Plates

• Can be used for gases or evaporation of liquid
• Distinguished between laminar & turbulent flow
• 𝑁𝑅𝑒 regime cutoff different in gas & liquid!
• – Characteristic length 𝐿: length of plate in flow direction

Flow Past Parallel Plates: Results

Laminar flow (𝑁𝑅𝑒 < 15, 000)

𝑗𝐷 = 0.664𝑁−0.5
𝑅𝑒,𝐿 (17)

𝑘′
𝑐𝐿

𝐷𝐴𝐵
= 0.664𝑁0.5

𝑅𝑒,𝐿𝑁1/3
𝑆𝑐 (18)

• This follows our derivation of boundary layer theory

Turbulent flow

• Gas: $15,000 < N_{Re}< 300,000 $

𝑗𝐷 = 0.036𝑁−0.2
𝑅𝑒,𝐿 (19)

• Liquid: 600 < 𝑁𝑅𝑒 < 50, 000

𝑗𝐷 = 0.99𝑁−0.5
𝑅𝑒,𝐿 (20)
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Case 3: Flow Past Single Sphere

• Frequent geometry in particle solutions
• Low Reynolds regime � solution for stagnant diffusion on spherical surface
• High Reynolds regime � correct 𝑁𝑆ℎ and back calculate 𝑘′

𝑐

Flow Past Single Sphere: Results

Low Reynolds (𝑁𝑅𝑒 < 2)

𝑁𝐴 = 2𝐷𝐴𝐵
𝐷𝑝

(𝑐𝐴1 − 𝑐𝐴2) (21)

= 𝑘𝑐(𝑐𝐴1 − 𝑐𝐴2) (22)

= 𝑘′
𝑐

𝑥𝐵𝑚
(𝑐𝐴1 − 𝑐𝐴2) (23)

(24)

• For 𝑥𝐵𝑚 ≈ 1, we have:

𝑘′
𝑐 = 2𝐷𝐴𝐵

𝐷𝑝

• Sherwood number: 𝑁𝑆ℎ = 2

High Reynolds (𝑁𝑅𝑒 > 2)

• Gas:

𝑁𝑆ℎ = 2 + 0.552𝑁0.53
𝑅𝑒 𝑁1/3

𝑆𝑐 (25)
0.6 < 𝑁𝑆𝑐 < 2.7 𝑁𝑅𝑒 < 48000 (26)

• Liquid:

𝑁𝑆ℎ = 2 + 0.95𝑁0.5
𝑅𝑒 𝑁1/3

𝑆𝑐 ; 𝑁𝑅𝑒 < 2000 (27)

𝑁𝑆ℎ = 0.347𝑁0.62
𝑅𝑒 𝑁1/3

𝑆𝑐 ; 2000 < 𝑁𝑅𝑒 < 17000 (28)

• Back calculate 𝑘′
𝑐 = 𝑁𝑆ℎ

𝐷𝐴𝐵
𝐷𝑝
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Case 4: Mass Transfer for Packed Beds

• Very common geometry for chemical engineering

– Adsorption and desorption through solid particles (gases and liquids)
– Catalytic processes with very large surface area

• Geometry characteristics: void fraction 𝜀:

𝜀 = void space
total space

= void space
void space + solid space

– Typically 0.3 < 𝜀 < 0.5
– Void fraction is difficult to measure experimentally

Correlation Equations In Packed Bed

Correlation 1, applicable to:

• gase with 10 < 𝑁𝑅𝑒 < 10, 000
• liquid with 10 < 𝑁𝑅𝑒 < 1500

𝑗𝐷 = 𝑗𝐻 = 0.4548
𝜀

𝑁 (
𝑅𝑒 − 0.4069) (29)

𝑁𝑅𝑒 =
𝐷𝑝𝑣′𝜌

𝜇
(30)

• 𝐷𝑝: (average) particle diameter
• 𝑣’: superficial velocity in the tube without packing

Correlation Equations In Packed Bed (II)

Correlation 2, applicable to:

• liquid with 0.0016 < 𝑁𝑅𝑒 < 55, 165 < 𝑁𝑆𝑐 < 70000

𝑗𝐷 = 1.09
𝜀

𝑁 (
𝑅𝑒 − 2/3) (31)

• liquid with 55 < 𝑁𝑅𝑒 < 1500, 165 < 𝑁𝑆𝑐 < 10690

𝑗𝐷 = 0.250
𝜀

𝑁 (
𝑅𝑒 − 0.31) (32)
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Correlation Equations In Packed Bed (III)

Correlation 3, applicable to fluidized beds

• 10 < 𝑁𝑅𝑒 < 4000 (gas & liquid)

𝑗𝐷 = 0.4548
𝜀

𝑁 (
𝑅𝑒 − 0.4069) (33)

• 1 < 𝑁𝑅𝑒 < 10 (liquid only)

𝑗𝐷 = 1.1068
𝜀

𝑁 (
𝑅𝑒 − 0.72) (34)

Packed Bed Calculation Steps

1. Known value from operational column: 𝜀, 𝑉𝑏 (total volume), 𝐷𝑝, 𝐷𝐴𝐵, 𝜇, 𝜌, etc.
2. Depend on the operational range, calculate 𝑁𝑅𝑒, 𝑁𝑆𝑐 � choose the equation for 𝑗𝐷
3. Obtain 𝑘𝑐 from 𝑗𝐷 value
4. Calculate flux 𝑁𝐴
5. Estimate effective area 𝐴𝑒𝑓𝑓 inside the columne � 𝑁𝐴 = 𝐴𝑒𝑓𝑓𝑁𝐴

Caveats In Packed Bed Problems (1)

• Estimate the effective area?

– First calculate the effective surface area per volume 𝑎 then 𝐴𝑒𝑓𝑓

𝑎 = 6(1 − 𝜀)
𝐷𝑝

(35)

𝐴𝑒𝑓𝑓 = 𝑎𝑉𝑏 (36)
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Caveats In Packed Bed Problems (2)
• Use log-mean driving force correction

𝑁𝐴 = 𝐴𝑒𝑓𝑓𝑁𝐴 (37)

= 𝐴𝑒𝑓𝑓𝑘𝑐
(𝑐𝐴,𝑖 − 𝑐𝐴1) − (𝑐𝐴,𝑖 − 𝑐𝐴2)

ln (𝑐𝐴,𝑖−𝑐𝐴1)
(𝑐𝐴,𝑖−𝑐𝐴2)

(38)

where

• 𝑐𝐴,𝑖: surface concentration
• 𝑐𝐴1, 𝑐𝐴2: in- and outlet concentrations

Caveats In Packed Bed Problems (3)

• Mass-flow balance

𝑁𝐴 = 𝐴𝑒𝑓𝑓𝑁𝐴 (39)
= 𝑉 (𝑐𝐴2 − 𝑐𝐴1) (40)

where 𝑉 is the volumetric flow rate.

These equations will give rise to solving the flow in packed bed problem.

Summary

• Dimensionless numbers can be used to correlate mass transfer problems in different flow
rate, dimension etc

• Typically, start with a known geometry (pipe? parallel plate? sphere? packed bed?)
• Find the correlation with dimensionless numbers 𝑁𝑅𝑒, 𝑁𝑆𝑐
• Calculate the final mass transfer rate
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