

MATE 664 Lecture 03

Driving Forces in Irreversible Thermodynamics

Dr. Tian Tian

2026-01-12

Recap of Lecture 02

Key ideas from last lecture:

- Crash course on statistical mechanics
 - Microstate in phase space macroscopic property with probability
 - Measurement of microstate entropy Boltzmann formula
 - Explain Boltzmann distribution
 - Explain entropy maximizing principle
- Introduction to irreversible thermodynamics
 - Postulate 1: local equilibrium assumption
 - Postulate 2: rate of entropy production is non-zero
 - Postulate 3: linear coupling between flux and forces
 - Postulate 4: symmetry between coupling coefficients

Learning Outcomes

After today's lecture, you will be able to:

- **Recall** the entropy production equation and link to rate
- **Analyze** the formula for entropy production the driving force expression
- **Derive** general equation for driving forces in system
- **Formulate** relationship between reciprocal driving force situations

Entropy Balance Equation

General form:

$$\frac{dS}{dt} = \left(\frac{dS}{dt} \right)_{\text{exchange}} + \left(\frac{dS}{dt} \right)_{\text{production}}$$

- Exchange: entropy flow across system boundaries
- Production: entropy generated internally
- Entropy **can flow** and **can be generated**

Entropy Production In Microscopic Cells

When applying local equilibrium, we generally consider **entropy density** $s = S_i/V_i$ for a certain *microscopic cell*.

Using *Balluffi book* notations, entropy balance equation looks like:

$$\frac{\partial s}{\partial t} = -\nabla \cdot \vec{J}_s + \dot{\sigma}$$

- \vec{J}_s : flux of entropy (exchange)
- $\dot{\sigma}$: entropy generation rate

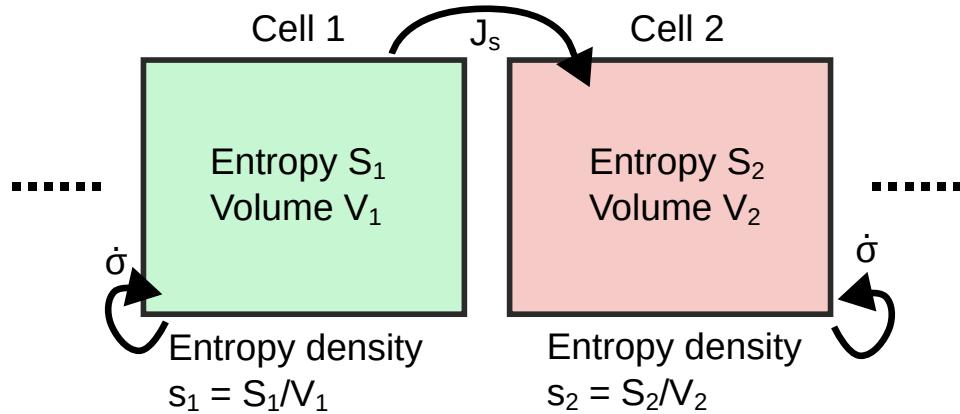


Figure 1: Scheme of microcell and entropy balance

Irreversible Thermodynamics

Central law:

$$\dot{\sigma} = \frac{\partial s}{\partial t} + \nabla \cdot \vec{J}_s \geq 0$$

- This is the local form of the second law.
- Equilibrium $\dot{\sigma} = 0$
- Can we have $\frac{\partial s}{\partial t} = 0$?

Entropy Balance: Solving $\dot{\sigma}$ and \vec{J}_s

Chain rule again! For any thermodynamic quantity ξ_i :

$$\frac{\partial s}{\partial t} = \sum_i \frac{\partial s}{\partial \xi_i} \frac{\partial \xi_i}{\partial t} \quad (1)$$

$$= \sum_i \frac{\partial s}{\partial \xi_i} (-\nabla \cdot \vec{J}_{\xi_i}) \quad (2)$$

- What quantities ξ_i can be used?
- How do we solve $\frac{\partial s}{\partial \xi_i}$?

Entropy Flux and Production: Results

After arranging the formula for entropy balance and apply laws in vector operations, we get:

$$\vec{J}_s = \sum_i \frac{\partial s}{\partial \xi_i} \vec{J}_{\xi_i} \quad (3)$$

$$\dot{\sigma} = \sum_i \vec{J}_{\xi_i} \cdot \nabla \left(\frac{\partial s}{\partial \xi_i} \right) \quad (4)$$

- It seems everything has relation with:
 - A flux \vec{J}_{ξ_i}

- An coefficient $\frac{\partial s}{\partial \xi_i}$ (Onsager's affinity)
- Non-negative entropy production \vec{J}_{ξ_i} and gradient (vector) $\nabla \left(\frac{\partial s}{\partial \xi_i} \right)$ have an angle no more than 90 degrees!

What Are The Affinities, Anyway?

Consider generalized 1st law of thermodynamics:

$$ds = \frac{1}{T}du - \sum_i \frac{\psi_i}{T}d\xi_i \quad (5)$$

It requires:

- ξ_i is an **extensive property**
- ψ_i is an **intensive property** often called **potential**
- ξ_i is **conjugate** to ψ_i

What are ψ and ξ ?

- General entropy differential (extended variables):

$$ds = \frac{1}{T}du - \frac{p}{T}dv - \sum_i \frac{\psi_i}{T}d\xi_i$$

- ξ_i : **extensive variables**

- volume v
- charge q
- concentration c
- surface area A
- dipole moment \mathbf{p}
- magnetic moment \mathbf{b}

- ψ_i : **conjugate intensive variables**

- pressure p
- electric potential ϕ

- chemical potential μ
- surface energy γ
- external electric field \mathbf{E}
- magnetic field \mathbf{H}

Each (ψ_i, ξ_i) pair contributes to entropy change.

Entropy Flux and Production In Driving Force Terms

We can rewrite the entropy balance equation using individual fluxes:

$$\vec{J}_s = - \sum_i \frac{\psi_i}{T} \vec{J}_{\xi_i} = \frac{1}{T} \vec{J}_u - \sum_i \frac{\psi_i}{T} \vec{J}_{\xi_i} \quad (6)$$

$$\dot{\sigma} = - \sum_i \vec{J}_{\xi_i} \cdot \nabla \left(\frac{\psi_i}{T} \right) = \vec{J}_u \cdot \nabla \left(\frac{1}{T} \right) - \sum_i \vec{J}_{\xi_i} \cdot \nabla \left(\frac{\psi_i}{T} \right) \quad (7)$$

- If u also have an corresponding potential, what will it be?

Entropy Production: With Flux of Heat Term

Often we wanted to write entropy generation using flux of heat $\vec{J}_Q = T\vec{J}_s$:

$$T\dot{\sigma} = - \frac{\vec{J}_Q}{T} \cdot \nabla T - \sum_i \vec{J}_{\xi_i} \cdot \nabla \psi_i \quad (8)$$

- Why is there a negative sign before each term?
- Can you generalize this term?

General Formula for Entropy Production

$$\boxed{\dot{\sigma} = - \sum_i [\text{flux of } \xi_i] \cdot [\nabla(\text{conjugate potential } \psi_i)]} \quad (9)$$

- ξ_i must be **extensive** \Rightarrow scales with system size V_i
- ψ_i is the **conjugate intensive potential**
 - does *not* scale with V_i
- $\nabla\psi_i$ acts as the **thermodynamic driving force**

This compact form unifies all irreversible transport processes.

What Are The Driving Forces (From Irreversible Thermodynamics)?

Some quantities and their driving forces, see *Balluffi Table 2.1*

Extensive quantity ξ_i	Flux \vec{J}_{ξ_i}	Conjugate force	Potential ψ_i
Heat Q	\vec{J}_Q	$-\frac{1}{T}\nabla T$	$\frac{1}{T}$
Chemical component i	\vec{J}_i	$-\nabla\mu_i$	μ_i
Electric charge q	\vec{J}_q	$-\nabla\phi$	ϕ

- Each row represents one irreversible transport process
- Force = gradient of the conjugate intensive potential
- Flux \cdot Force contributes to entropy production

Empirical Laws of Fluxes

We also know that fluxes are having empirical relation to the driving force (in a gradient form):

$$\text{Flux} = (\text{transport coefficient}) \times (\text{driving force})$$

Fourier's law (heat conduction)

$$\vec{J}_Q = -k\nabla T = -kT^2 \nabla \left(\frac{1}{T}\right)$$

Fick's law (mass diffusion)

$$\vec{J}_i = -D_i \nabla c_i = -\mu_i c_i \nabla \mu_i$$

Ohm's law (electrical conduction)

$$\vec{J}_q = -\rho \nabla \phi$$

Entropy Production in the Uncoupled Case

If each flux is influenced by only **one dominant driving force (D.F.)**:

$$\text{entropy production} = (\text{flux}) \cdot (\text{driving force})$$

Using linear response:

$$\vec{J} = (\text{coefficient}) \times (\text{D.F.})$$

we obtain

$$T\dot{\sigma} = (\text{coefficient}) \|\text{D.F.}\|^2$$

Consequences of Irreversible Dynamics (Uncoupled Driving Force)

- Empirically, all transport coefficients are **positive** from irreversible thermodynamics
- Therefore:

$$\sigma \geq 0$$

- Entropy production vanishes only when:

$$\vec{\sigma} = 0 \iff \|\text{D.F.}\| = 0$$

- The second law constrains transport coefficients

- Positivity of entropy production \Rightarrow positivity of coefficients
- This reasoning will be generalized when **fluxes are coupled**

Linear Irreversible Thermodynamics: Coupled Fluxes

- Extensive quantities: ξ_i
- Conjugate driving forces:

$$\vec{F}_i \equiv -\nabla \psi_i$$

- Associated fluxes: \vec{J}_i

We write them in a matrix form as shown in [Lecture 2](#)

$$\vec{J} = \mathbf{L} \vec{F}$$

or, component-wise,

$$\vec{J}_i = \sum_j L_{ij} \vec{F}_j$$

Entropy Production with Coupling

$$\dot{\sigma} = \sum_i \vec{J}_i \cdot \vec{F}_i = \sum_{i,j} L_{ij} \vec{F}_i \cdot \vec{F}_j$$

- Second law requires:

$$\dot{\sigma} \geq 0$$

- **L** must be **positive semi-definite**

Onsager Reciprocity (Again!)

Under microscopic reversibility:

$$L_{ij} = L_{ji}$$

- Symmetry of \mathbf{L} reduces number of independent coefficients
- Fundamental constraint linking kinetics and thermodynamics

Physical Examples of Coupling

- Thermoelectric effects (Seebeck / Peltier)
- Thermodiffusion (Soret / Dufour)
- Electrokinetic transport

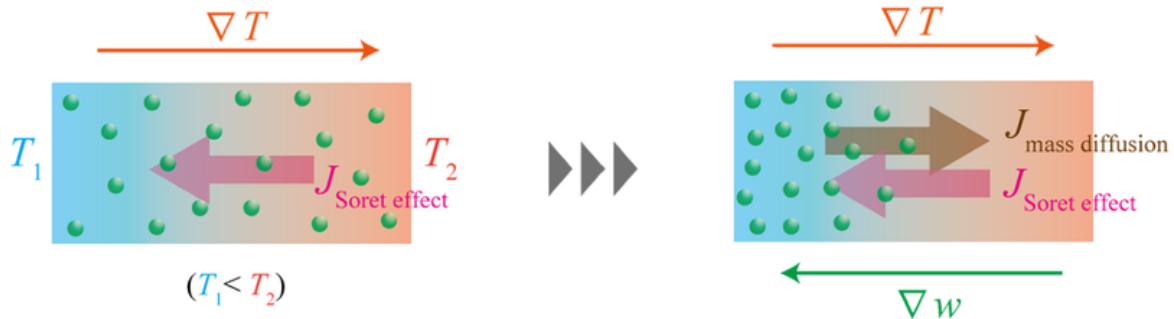
Coupling: Mass Thermal – Soret / Dufour Effects

Coupled flux–force relations

- Mass flux driven by temperature gradient (Soret effect)
- Heat flux driven by concentration gradient (Dufour effect)

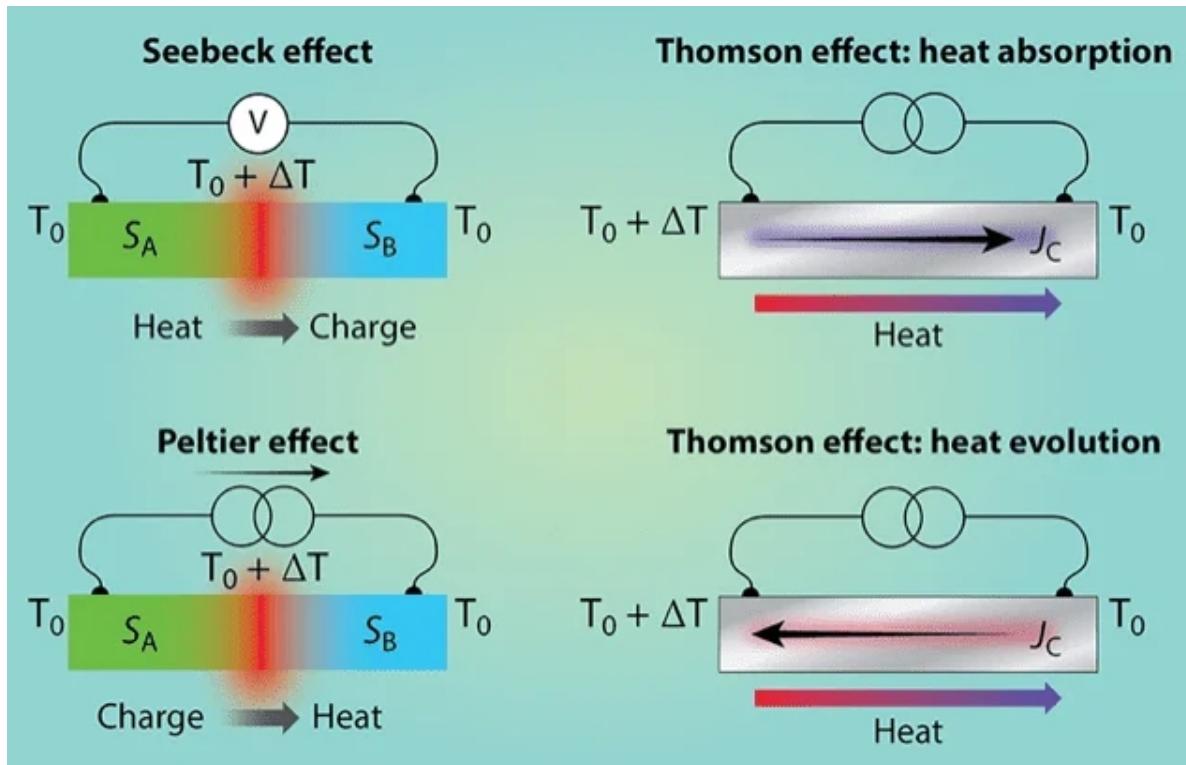
Derivation of Soret thermal conductivity please see lecture handwritten notes

If S_T of component 1 is positive:



Coupling: Charge Thermal – Seebeck / Peltier Effects

Coupled flux–force relations - Electric current driven by temperature gradient (Seebeck effect) - Heat flux driven by electric field (Peltier effect)



Coupling: Charge Mass – Electrokinetic Phenomena

Coupled flux–force relations - Charge and mass transport are interdependent in ionic systems

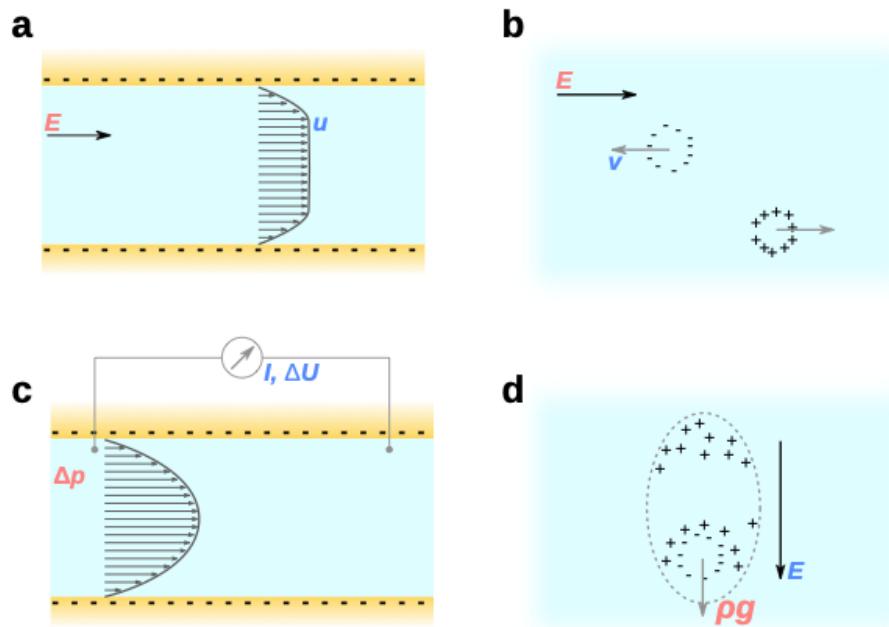


Figure 14.1: Typical electrokinetic phenomena. (a) electroosmosis. (b) electrophoresis. (c) streaming current / potential. (d) sedimentation potential.

General Matrix for Coupling Effects

Example coupling effect matrix given in *J. Phase Equilib. Diffus.* 2022 43, 640

Flux	Heat	Electric	Diffusion
Force			
Temperature gradient	Fourier	Seebeck	Soret Thermal migration
Voltage	Peltier	Ohm	Electro migration
Chemical potential gradient	Dufour	Volta (galvanic cell)	Fick

Fig. 1 Classical cross effects

Some Additional Consequence of Onsager Reciprocity

There are some consequences of Onsager's reciprocity. As Curie's symmetry principle (1894, *Pierre Curie, not Marie*) stated, the cause of an effect needs to follow tensor rank selection rule, that:

Flux – Driving Force pair can only be induced when they have the same tensor rank, or differ by 2.

Table 10-1 Flux–Driving Force Relations

Fluxes	Velocity Gradient	Temperature Gradient	Concentration Gradient	Chemical Affinity
Momentum (tensor, 9 components)	$\tau_{yx} = \mu dv/dy$			
Heat (vector, 3 components)		$q_y = k dT/dy$ Fourier's Law	Dufour effect	
Mass (vector, 3 components)		Soret effect, thermal diffusion	$J_{A_y} = D_{AB} dC_A/dy$ Fick's Law	
Chemical reaction (scalar)				rate = $k_r C_A^n$

Note: All equations shown are one-dimensional form.

Source: Reference 6, with permission. Copyright 1996, American Chemical Society.

Figure 2: Tensor rank coupling from Griskey Book 2002

The coupling of momentum-transfer (fluid, 2nd-order) and chemical reaction (0th-order) has only been recently proposed! See *J. Chem. Phys.* **2022**, 157, 084901.

Summary

- Entropy balance equation solutions for flux of entropy and entropy production
- Entropy production rate flux of quantity driving force
- Flux of quantity Coefficient Driving Force
- Examples of reciprocal relation in transport phenomena
- Brief introduction of diffusion