Driving Forces in Irreversible Thermodynamics
2026-01-12
Note
Key ideas from last lecture:
After today’s lecture, you will be able to:
General form: \[ \frac{dS}{dt} = \left(\frac{dS}{dt}\right)_{\text{exchange}} + \left(\frac{dS}{dt}\right)_{\text{production}} \]
When applying local equilibrium, we generally consider entropy density \(s = S_i / V_i\) for a certain microscopic cell.
Using Balluffi book notations, entropy balance equation looks like:
\[ \frac{\partial s}{\partial t} = -\nabla\cdot\vec{J}_{s} + \dot{\sigma} \]
Scheme of microcell and entropy balance
Central law:
\[ \dot{\sigma} = \frac{\partial s}{\partial t} + \nabla\cdot\vec{J}_{s} \geq 0 \]
Chain rule again! For any thermodynamic quantity \(\xi_{i}\):
\[\begin{align} \frac{\partial s}{\partial t} &= \sum_i \frac{\partial s}{\partial \xi_i} \frac{\partial \xi_i}{\partial t} \\ &= \sum_i \frac{\partial s}{\partial \xi_i} (- \nabla \cdot \vec{J}_{\xi_i}) \end{align}\]After arranging the formula for entropy balance and apply laws in vector operations, we get:
\[\begin{align} \vec{J}_s &= \sum_i \frac{\partial s}{\partial \xi_i} \vec{J}_{\xi_i} \\ \dot{\sigma} &= \sum_i \vec{J}_{\xi_i} \cdot \nabla \left(\frac{\partial s}{\partial \xi_i}\right) \end{align}\]Consider generalized 1st law of thermodynamics:
\[\begin{align} d s = \frac{1}{T} du - \sum_i \frac{\psi_i}{T} d\xi_i \end{align}\]It requires:
Each \((\psi_i,\xi_i)\) pair contributes to entropy change.
We can rewrite the entropy balance equation using individual fluxes:
\[\begin{align} \vec{J}_s &= - \sum_i \frac{\psi_i}{T}\,\vec{J}_{\xi_i} = \frac{1}{T}\,\vec{J}_u - \sum_i \frac{\psi_i}{T}\,\vec{J}_{\xi_i} \\ \dot{\sigma} &= - \sum_i \vec{J}_{\xi_i}\cdot \nabla\!\left(\frac{\psi_i}{T}\right) = \vec{J}_u \cdot \nabla\!\left(\frac{1}{T}\right) - \sum_i \vec{J}_{\xi_i}\cdot \nabla\!\left(\frac{\psi_i}{T}\right) \end{align}\]Often we wanted to write entropy generation using flux of heat \(\vec{J}_{Q} = T \vec{J}_s\):
\[\begin{align} T\dot{\sigma} = - \frac{\vec{J}_Q}{T}\cdot \nabla T - \sum_i \vec{J}_{\xi_i}\cdot \nabla \psi_i \end{align}\]This compact form unifies all irreversible transport processes.
Some quantities and their driving forces, see Balluffi Table 2.1
| Extensive quantity \(\xi_i\) | Flux \(\vec{J}_{\xi_i}\) | Conjugate force | Potential \(\psi_i\) |
|---|---|---|---|
| Heat \(Q\) | \(\vec{J}_Q\) | \(-\frac{1}{T}\nabla\!T\) | \(\dfrac{1}{T}\) |
| Chemical component \(i\) | \(\vec{J}_i\) | \(-\nabla \mu_i\) | \(\mu_i\) |
| Electric charge \(q\) | \(\vec{J}_q\) | \(-\nabla \phi\) | \(\phi\) |
–
We also know that fluxes are having empirical relation to the driving force (in a gradient form):
\[ \text{Flux} = (\text{transport coefficient}) \times (\text{driving force}) \]
Fourier’s law (heat conduction) \[ \vec{J}_Q = -k \nabla T = -k T^2 \nabla\!\left(\frac{1}{T}\right) \]
Fick’s law (mass diffusion) \[ \vec{J}_i = -D_i \nabla c_i = -\mu_i c_i \nabla \mu_i \]
Ohm’s law (electrical conduction) \[ \vec{J}_q = -\rho \nabla \phi \]
If each flux is influenced by only one dominant driving force (D.F.):
\[ \text{entropy production} = (\text{flux}) \cdot (\text{driving force}) \]
Using linear response: \[ \vec{J} = (\text{coefficient}) \times (\text{D.F.}) \]
we obtain \[ \boxed{ T \dot{\sigma} = (\text{coefficient}) \, \lVert \text{D.F.} \rVert^2 } \]
Empirically, all transport coefficients are positive from irreversible thermodynamics
Therefore: \[ \sigma \ge 0 \]
Entropy production vanishes only when: \[ \vec{\sigma} = 0 \quad \Longleftrightarrow \quad \lVert \text{D.F.} \rVert = 0 \]
The second law constrains transport coefficients
Positivity of entropy production \(\Rightarrow\) positivity of coefficients
This reasoning will be generalized when fluxes are coupled
We write them in a matrix form as shown in Lecture 2
\[ \vec{J} = \mathbf{L}\,\vec{F} \]
or, component-wise, \[ \vec{J}_i = \sum_j L_{ij}\,\vec{F}_j \]
\[ \dot{sigma} = \sum_i \vec{J}_i \cdot \vec{F}_i = \sum_{i,j} L_{ij}\,\vec{F}_i \cdot \vec{F}_j \]
Under microscopic reversibility: \[ \boxed{ L_{ij} = L_{ji} } \]
Coupled flux–force relations
Derivation of Sorret thermal conductivity please see lecture handwritten notes
Coupled flux–force relations - Electric current driven by temperature gradient (Seebeck effect) - Heat flux driven by electric field (Peltier effect)
Coupled flux–force relations - Charge and mass transport are interdependent in ionic systems
Example coupling effect matrix given in J. Phase Equilib. Diffus. 2022 43, 640
There are some consequences of Onsager’s reciprocity. As Curie’s symmetry principle (1894, Pierre Curie, not Marie) stated, the cause of an effect needs to follow tensor rank selection rule, that:
Flux – Driving Force pair can only be induced when they have the same tensor rank, or differ by 2.
Tensor rank coupling from Griskey Book 2002
The coupling of momentum-transfer (fluid, 2nd-order) and chemical reaction (0th-order) has only been recently proposed! See J. Chem. Phys. 2022, 157, 084901.