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Recap of Lecture 03

Key ideas from last lecture:

• Entropy flux and production
• Rewritting entropy production in flux and driving force terms
• Direct and coupling coefficients
• Analysis of several cross-coupling effects in material science

Learning Outcomes

After today’s lecture, you will be able to:

• Identify driving forces and fluxes for diffusive mass transport
• Derive Fick’s first law from irreversible thermodynamics using chemical potential
• Estimate magnitudes of diffusivity in gases, liquids, and solids
• Explain temperature dependence of diffusivity using Arrhenius-type relations
• explain the thermodynamic origin of self-diffusion
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Recap: Driving Forces in Irreversible Thermodynamics

• entropy balance:
𝑑𝑠
𝑑𝑡

= −∇ ⋅ ⃗𝐽𝑠 + 𝜎̇

• entropy flux:
⃗𝐽𝑠 = ∑

𝑖

𝜓𝑖
𝑇

⃗𝐽𝑖

• entropy production:
𝑇𝜎̇ = − ∑

𝑖

⃗𝐽𝑖 ⋅ ∇𝜓𝑖 ≥ 0

When Do 𝜎̇ Diminish? Orthogonality of Flux and Driving Force

We will show one example that has non-trivial solution to 𝜎̇ = 0

• entropy production vanishes if:
⃗𝐽𝑖 ⋅ ∇𝜓𝑖 = 0

• Example: Hall effect

– Current flows while electric potential gradient is orthogonal
– Generalized for thermomagnetic and galvanomagnetic effects (Callen Phys. Rev.

1948, 73, 1349)
– Magnetic field induced symmetry breaking
– 𝐿𝑖𝑗(𝐻) = 𝐿𝑗𝑖(−𝐻)
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Figure 1: Hall effect scheme

Chemical Potential as Driving Force

• Consider one chemical species with chemical potential 𝜇

• Definition:
𝜇 = ( 𝜕𝑈

𝜕𝑁
)

𝑆,𝑉

• 𝜇 represents energy cost of adding more molecules

• Diffusion driven by gradients in 𝜇

See analog to a water tank in handwritten notes

Entropy Production and Mass Flux

• Entropy production due to diffusion:

𝑇𝜎̇ = − ⃗𝐽𝑚 ⋅ ∇𝜇
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• Linear law:
⃗𝐽𝑚 = −𝐿𝑀𝑀∇𝜇

• 𝐿𝑀𝑀: phenomenological mobility coefficient

From Mobility to Fick’s Law (Determine 𝐿𝑀𝑀)

See analog in handwritten notes

• Force balance and drift velocity (𝑀: mobility):

𝑣 = 𝑀∇𝜇

• Mass flux:
⃗𝐽 = 𝑐𝑣 = −𝑀𝑐∇𝜇

• Diffusion coefficient:
𝐷 = 𝑀𝑘𝐵𝑇

Chemical Potential in Mixtures

See analog in handwritten notes

• For constant 𝑇 , 𝑃:

𝜇𝑖 = ( 𝜕𝐺
𝜕𝑁𝑖

)
𝑇 ,𝑃

• Chemical potential in a mixture solution:

𝜇𝑖 = 𝜇0
𝑖 + 𝑘𝐵𝑇 ln 𝛾𝑖𝑥𝑖

• activity coefficient 𝛾𝑖 = 1 for ideal solution (Raoult’s law)
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Fick’s First Law

• Substitute 𝜇𝑖 into flux. For species 𝑖

⃗𝐽 = −𝐷∇𝑐

• Assumptions:

– ideal solution
– constant 𝑇
– isotropic medium (𝐷𝛼𝛽 = 𝐷 = Const)

• concentration gradient is a special case of ∇𝜇

What Does Diffusivity Depend On?

• temperature
• concentration
• spatial position (??)
• general diffusion driven by ∇𝜇
• Fick’s law valid under restricted conditions

Fick’s Second Law

• Mass conservation (no source term)

𝜕𝑐
𝜕𝑡

= −∇ ⋅ ⃗𝐽

• Substitution:
𝜕𝑐
𝜕𝑡

= ∇ ⋅ (𝐷∇𝑐)

• If 𝐷𝑖 is constant:
𝜕𝑐
𝜕𝑡

= 𝐷𝑖∇2𝑐

– ∇2: Laplace operator
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One-Dimensional Diffusion in Isotropic Homogeneous Medium

• 1D equation:
𝜕𝑐
𝜕𝑡

= 𝐷 𝜕2𝑐
𝜕𝑥2

• Steady state:
𝜕2𝑐
𝜕𝑥2 = 0

– Linear concentration profile!

Physical Meaning of Laplace Operator

• ∇2𝑐 measures curvature (sort of…)

• Steady state implies zero curvature

• Transient diffusion requires nonzero curvature

• Curvature and Second Derivative

– concave profile:
𝑑2𝑐
𝑑𝑥2 < 0

– convex profile:
𝑑2𝑐
𝑑𝑥2 > 0

– curvature determines smoothing direction

Typical Magnitudes of Diffusivity

• gases:
𝐷 ∼ 10−5 m2/s

• liquids:
𝐷 < 10−9 m2/s

• solids:
𝐷 < 10−13 m2/s
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Typical 𝐷 Range

A Common Misconception

Search for any youtube video with “diffusion experiment dye”

Example Video

Can we verify whether the scenario seen is Ficknian diffusion?

Diffusion vs Convection Length Scale

Length 𝐿 traveled in time 𝑡:

• Diffusion: 𝐿 = 6√𝐷𝐴𝐵 𝑡 (Einstein, ~1905)
• Convection: 𝐿 = 𝑣𝑚 𝑡

What is typical 𝐷𝐴𝐵 in a liquid?
- Often 𝐷𝐴𝐵 ∼ 10−9 to 10−10 m2/s

Assuming 𝐷𝐴𝐵 = 10−10m2/s 𝑣𝑚 = 10−3m/s

Temperature Dependence of Diffusivity

• Arrhenius form:
𝐷 = 𝐷0 exp(−Δ𝐻𝑎

𝑘𝐵𝑇
)

• Δ𝐻𝑎: activation enthalpy
• Why do we measure Δ𝐻𝑎, not the Δ𝐺𝑎?
• How can you read the plot?

7

https://www.youtube.com/embed/STLAJH7_zkY


1

Physical Interpretation of Activation

• atoms hop between sites
• energy barrier must be overcome
• jump frequency:

Γ = 𝜈 exp(−Δ𝐺‡

𝑘𝐵𝑇
)

• diffusion proportional to hop rate and distance

1Solid. State Ionics 2006, 177, 2839
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Multiple Diffusion Mechanisms

Figure 2: Intrinsic and extrinsic mechanism in doped halides

• Different diffusion paths
• Different activation energies
• Dominant mechanism controls slope of ln 𝐷 vs 1/𝑇
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Diffusion in Gases

• Kinetic theory description

• Chapman–Enskog result:

𝐷 ∝ 𝑇 3/2

𝑃

• Collisions limit transport

Diffusion in Liquids

• Stokes–Einstein equation:
𝐷 = 𝑘𝐵𝑇

6𝜋𝜂𝑟

• 𝜂: viscosity

• 𝑟: particle radius

• Is it accurate enough in polymer solutions?

Diffusion in Solids

• Diffusion in solids is much more complex!
• Discrete lattice sites
• Mechanisms (non-exhaustive)

– Vacancy
– Ring mechanism
– Push-out mechanism
– Interstitial

• Strong temperature dependence
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Vacancy Diffusion Mechanism

• Atoms exchange with vacancies
• Jump only if vacancy is adjacent
• Vacancy sources:

– Surfaces
– Grain boundaries
– Dislocations

Types of Diffusivity

As the previous example of diffusion + convection video shows, the measurement of diffusivity
really depends on which reference frame we use.

• Self-diffusivity 𝐷∗

• Intrinsic diffusivity 𝐷𝑖 (lattice frame / C-frame; C �crystal)
• Inter-diffusivity 𝐷̃ (laboratory frame / V-frame; V �volume-fixed)

Measuring Self-Diffusion

• Isotope tracer experiments

• Lattice constraint:
𝑐𝑖 + 𝑐∗

𝑖 + 𝑐𝑣 = const

– General “network-constrained” problem

• Vacancy concentration often at equilibrium

– Vacancy balance with the source (surface / grain boundary / dislocation)
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Figure 3: Setup for isotope diffusion

Flux Relations in Network-Constrained Systems

• Flux driven by chemical potential differences (1D)

– Non-radioactive species:

𝐽𝑖 = −𝐿𝑖𝑖
𝜕(𝜇𝑖 − 𝜇𝑣)

𝜕𝑥
− 𝐿𝑖𝑖∗

𝜕(𝜇𝑖∗ − 𝜇𝑣)
𝜕𝑥

– Radioactive species:

𝐽𝑖∗ = −𝐿𝑖∗𝑖
𝜕(𝜇𝑖 − 𝜇𝑣)

𝜕𝑥
− 𝐿𝑖∗𝑖∗

𝜕(𝜇𝑖∗ − 𝜇𝑣)
𝜕𝑥

– Vacancy (zero-flux, why?):
𝐽𝑣 = 0
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Vacancy Equilibrium Assumption

• 𝜇𝑣 = const
• 𝐽𝑣 = 0
• total flux balance:

𝐽𝑖 + 𝐽 ∗
𝑖 + 𝐽𝑣 = 0

Resulting Self-Diffusion Flux

• Chemical potential gradient:
𝜕𝜇𝑖∗

𝜕𝑥
= 𝑘𝐵𝑇 1

𝑐𝑖

𝜕𝑐𝑖
𝜕𝑥

• Self-diffusion coefficient:
𝐷∗ = 𝑘𝐵𝑇 (𝐿𝑖𝑖

𝑐𝑖
+ 𝐿𝑖𝑖∗

𝑐𝑖∗
)

Why Self-Diffusion Occurs

• No macroscopic concentration gradient!
• Chemical potential varies locally
• Random walk lowers free energy
• Entropy maximization drives motion

Summary

• Diffusion is driven by chemical potential gradients
• Fick’s laws follow from irreversible thermodynamics
• Laplace operator reflects curvature and smoothing
• Diffusivity varies strongly with phase and temperature
• Self-diffusion exists even in homogeneous systems
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