

MATE664 L05

Jan -19 2026

1 Recap :

Diffusion \leftarrow Driving force μ

Homogeneous medium

$$D = \mu \cdot k_B T$$

$$J = C \cdot D = M \cdot c \cdot \nabla \psi$$

\downarrow
Flux

\downarrow
driving force

Fick's 1st law

$$J = -D \nabla c$$

Fick's 2nd law

$$J = -\nabla \cdot (D \nabla c)$$

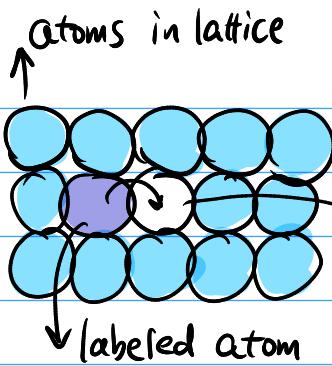
$= D \nabla^2 c$ in homogeneous medium

{ D values for solid ?

Which reference to use ?

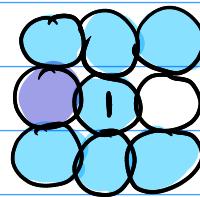
What can affect D ?

Vacancy mechanism Cont'd



Vacancy

purple atom can jump to
Vacancy Site only if they're
adjacent !



purple atom cannot jump
to Vacancy !

Only after atom labeled 1
swap with Vacancy

In Vacancy mechanism, Vacancies can be generated by
multiple "Sources" {
Surface
Grain boundary (GB)
dislocation

We also need to distinguish different "Diffusivities"

Self-diffusivity *D = atoms diffuse through homogeneous medium

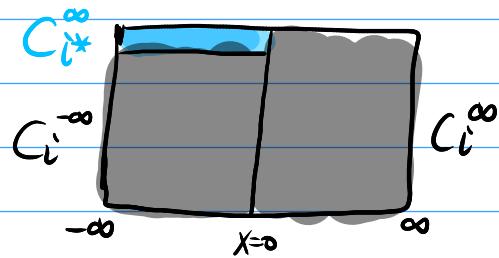
Intrinsic diffusivity D_i = diffusivity measured locally in
chemically inhomogeneous medium
(from local frame)

Inter diffusivity \tilde{D} = diffusivity in inhomogeneous medium
(from lab frame)

How to measure self-diffusivity?

Use radioactive label

Fluxes for
 Normal species $\rightarrow i$
 Isotope $\rightarrow i^*$
 Vacancy $\rightarrow V$



The lattice does not change during self diffusion.

① All sites must be occupied by either i , i^* or V

$$\Rightarrow dC_i + dC_i^* + dC_V = 0 \quad dC_V = -dC_i - dC_i^*$$

1st law becomes

$$\begin{aligned} Tds &= du + dw - \mu_i dC_i - \mu_{i^*} dC_{i^*} - \mu_V dC_V \\ &= \dots \quad \dots \quad \dots \quad \dots \quad - \mu_V (-dC_i - dC_{i^*}) \\ &= du + dw - (\mu_i - \mu_V) dC_i - (\mu_{i^*} - \mu_V) dC_{i^*} \end{aligned}$$

In such **network-constrained** system, identify Flux Driving Force

$$\begin{array}{ll} \text{Flux} & \text{D.F.} \\ \vec{J}_i & -\nabla(\mu_i - \mu_V) \\ \vec{J}_{i^*} & -\nabla(\mu_{i^*} - \mu_V) \end{array} \xrightarrow{\substack{\text{Symmetry} \\ \text{1D}}} \begin{array}{l} J_i = -L_{ii} \frac{\partial(\mu_i - \mu_V)}{\partial x} \\ -L_{ii^*} \frac{\partial(\mu_{i^*} - \mu_V)}{\partial x} \end{array}$$

Flux of vacancy?

$\xleftarrow{J_V}$

$$\begin{aligned} J_{i^*} &= -L_{i^*i} \frac{\partial(\mu_i - \mu_V)}{\partial x} \\ -L_{i^*i^*} \frac{\partial(\mu_{i^*} - \mu_V)}{\partial x} \end{aligned}$$

$$J_i + J_{i^*} + J_V = 0$$

Assumptions:

- { Vacancies only account for negligible portion $X_V \approx 0$
- { Vacancy chem potential $\mu_V = 0$ (equilibrium for V)
- { i , i^* mixing follows $\gamma_i = \gamma_{i^*} = 1$ (Raoult's law)

$$\text{We thus have } \left(\frac{\partial \mu_i}{\partial x} = - \frac{\partial \mu_i^*}{\partial x} \right) \quad \left(\mu_i = \mu_i^* + k_B T \ln c_i \Rightarrow \frac{\partial \mu_i}{\partial x} = \frac{k_B T}{c_i} \frac{\partial c_i}{\partial x} \right)$$

$$J_i = -k_B T \left[\frac{L_{ii}}{c_i} - \frac{L_{ii}^*}{c_i^*} \right] \frac{\partial c_i}{\partial x}$$

$$J_i^* = -k_B T \left[\frac{L_{ii}^*}{c_i^*} - \frac{L_{ii}}{c_i} \right] \frac{\partial c_i^*}{\partial x}$$

$$J_V = 0 \quad (\text{vacancies at equilibrium})$$

$$J_i + J_i^* = 0 \Rightarrow J_i^* = -J_i = k_B T \left[\frac{L_{ii}}{c_i} - \frac{L_{ii}^*}{c_i^*} \right] \frac{\partial c_i}{\partial x}$$

$$= -k_B T \left[\frac{L_{ii}}{c_i} - \frac{L_{ii}^*}{c_i^*} \right] \frac{\partial c_i^*}{\partial x}$$

*D \rightarrow are L_{ii}

the same?

If we consider concentration of "chemical species" & L_{ii}^*
there is no chemical conc gradient

But chemical potential is variant!

Why self diffusion happens \Rightarrow maximizing entropy

we would assume $L_{ii} \approx L_{ii}^*$

But $c_i \gg c_i^*$

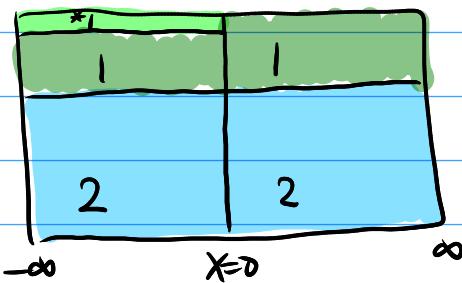
pure $\frac{L_{ii}}{c_i} - \frac{L_{ii}^*}{c_i^*}$

$$J = -M_i c_i \nabla \mu_i$$

$$= L_{ii} (-\nabla \mu_i)$$

$$L_{ii} = \mu_i c_i \Rightarrow \frac{L_{ii}}{c_i} = \mu_i \quad \text{But } \frac{L_{ii}^*}{c_i^*} \neq \mu_i^*$$

The results can be obtained for isotope self diffusion
in homogeneous binary mixture



Again even 4 species $1, 1^*, 2, 2^*$
are moving, we have fixed lattice plane
so

$$J_{1^*} = -k_B T \left[\frac{L_{11}}{C_1} - \frac{L_{11^*}}{C_{1^*}} \right] \frac{\partial C_{1^*}}{\partial x}$$

D_1 (self diffusivity of
1 in binary)

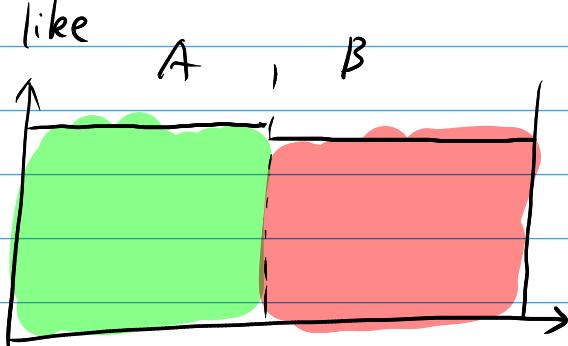
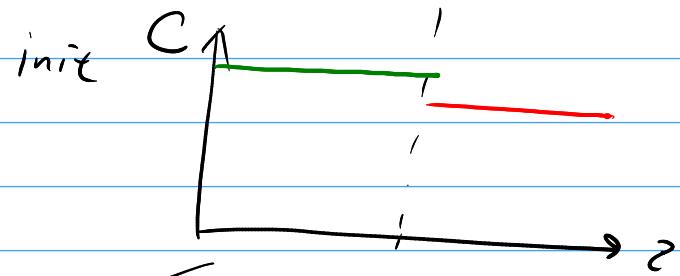
Summary :

self diffusion happens as result of random walk
(even if no chemical inhomogeneity)

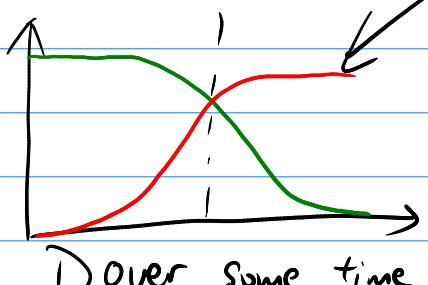
We'll see how to deal with systems having lattice change
during diffusion \Rightarrow interdiffusion

Interdiffusion of Binary systems

Consider diffusion pair A-B, what will profile looks like



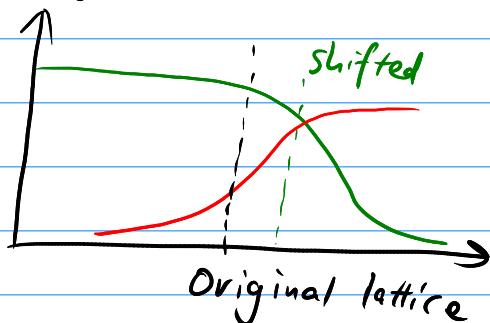
$$D_A = D_B$$



1) Over some time
2) solo Fick's 2nd law

$$D_A \neq D_B ?$$

Say $D_A > D_B$



$$\text{Intrinsic } D_A > D_B \Rightarrow J_A > -J_B$$

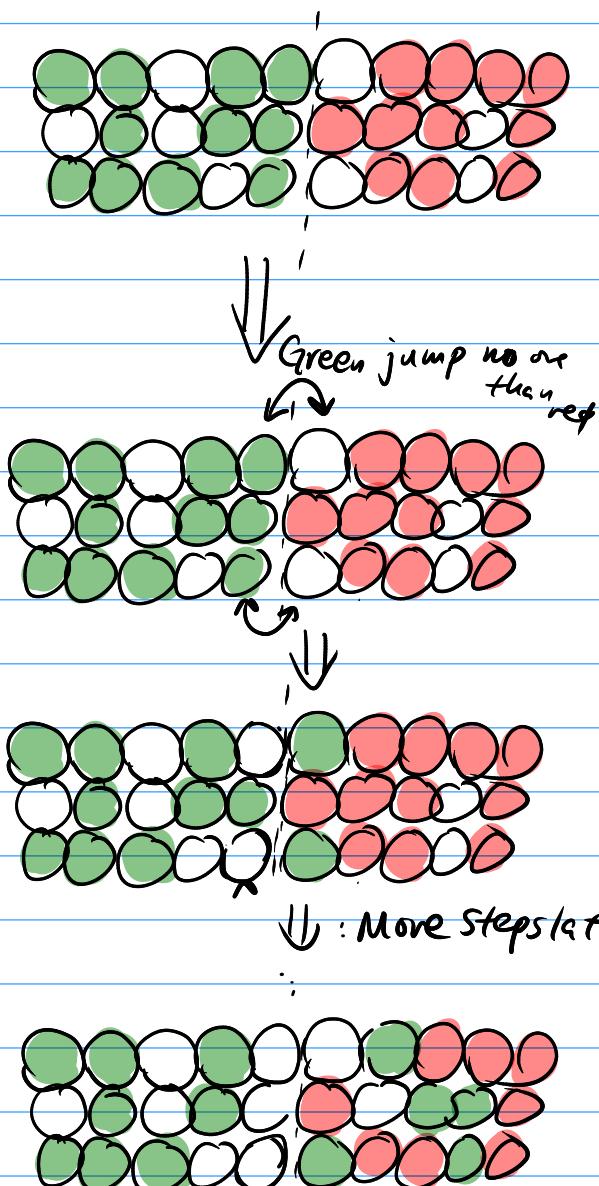
net accumulation on the B side

(First exp Boyle

According to Barr [11], perhaps Robert Boyle (1627 – 1691) reported the first clear experimental evidence for solid-state diffusion in a study called 'The Porosity of Bodies'. He observed the penetration of a 'solid and heavy body', probably zinc in a small coin of copper. The side of the coin exposed to zinc took a golden colour, while the other side kept its original colour. He also observed that 'the golden colour had penetrated a pretty way beneath the surface of the coin'. It appears that Boyle has observed the formation of brass by solid-state diffusion between zinc and copper.

Consider vacancy mechanism

- ① we don't allow lattice parameter to change
- ② we can swap sites with vacancy
- ③ Maybe interdiffusion is eq for vacancy?



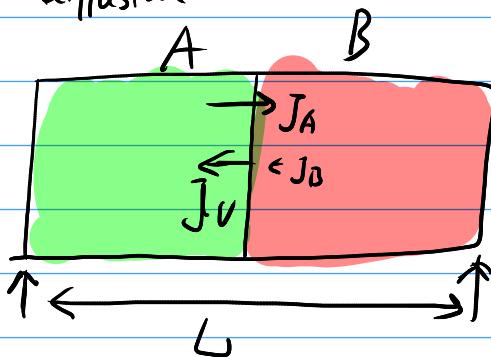
- ① Where is A/B interface?
- ② How do vacancies move?

Semi-quantitatively, at the local (crystal) frame

$$\vec{J}_A^c + \vec{J}_B^c + \vec{J}_V^c = 0 \text{ still satisfies } (I_{in} - O_{out} = 0)$$

- \vec{J}_V^c relative to this site, total flux = 0

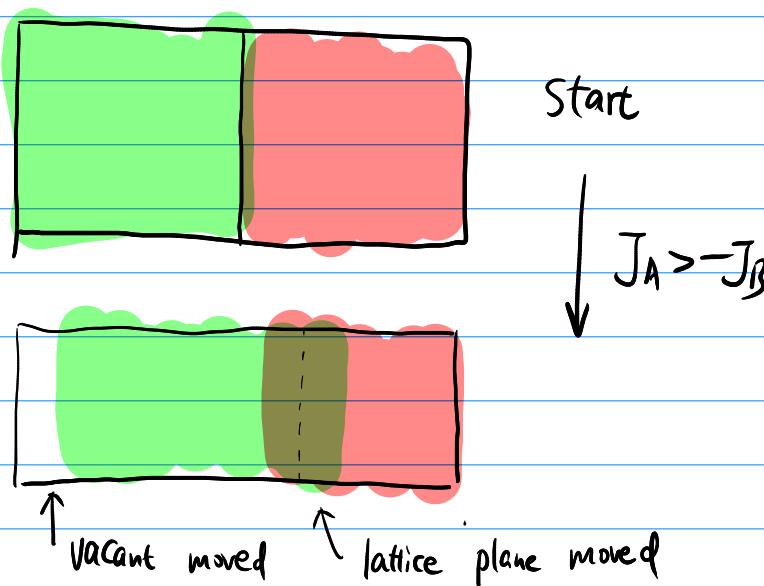
We need to acknowledge lattice change due to diffusion



$$As J_A + J_B + J_V = 0$$

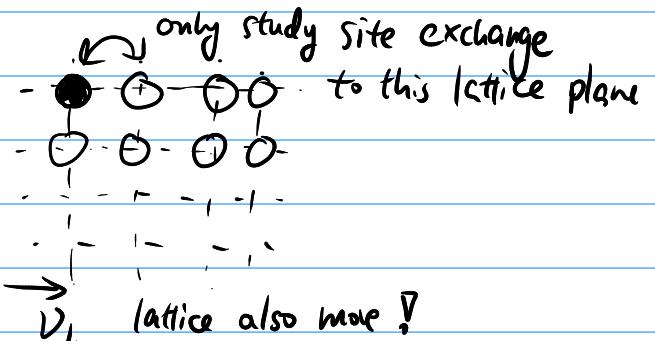
$$But J_A > -J_B$$

we have \vec{J}_V opposite to fast diffusing component



We have 2 types of reference frames now available

① crystal frame (C)



② volume-fixed frame (V)

Let's see fluxes in C-frame (denote J^C)

Use the same condition in self-diffusivity

3 components 1, 2, V

$$J_1^C = -L_{11} \frac{\partial(\mu_1 - \mu_V)}{\partial x} - L_{12} \frac{\partial(\mu_2 - \mu_V)}{\partial x}$$

$$J_2^C = -L_{21} \frac{\partial(\mu_1 - \mu_V)}{\partial x} - L_{22} \frac{\partial(\mu_2 - \mu_V)}{\partial x}$$

$$J_V^C = -(J_1^C + J_2^C)$$

Now we have concentration C_1, C_2 varied!

Change of μ_i by n_i in multi-component system

↓ Gibbs-Duhem eqn (local equilibrium)

$$\sum_i n_i d\mu_i = 0 \quad \left(\begin{array}{l} \text{Because } U = ST - PV + \sum \mu_i \cdot n_i \\ dU = SdT + TdS - PdV - VdP + \sum \mu_i dn_i \\ + \sum n_i d\mu_i \end{array} \right)$$

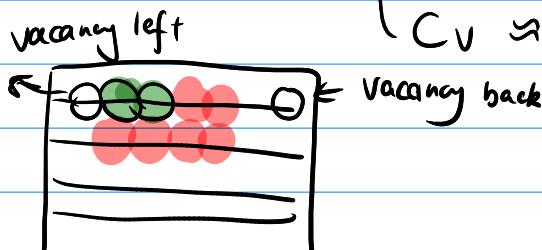
$$\sum_i C_i d\mu_i = 0 \quad \text{And we know } d\mu_i = TdS - PdV + \sum \mu_j dn_j$$

$$\sum n_i d\mu_i = -SdT + VdP$$

$$C_1 \frac{\partial \mu_1}{\partial x} + C_2 \frac{\partial \mu_2}{\partial x} + C_V \frac{\partial \mu_V}{\partial x} = 0 \quad \begin{array}{l} \text{○ const } T \quad \text{○ const } P \end{array}$$

At C-frame, the vacancies move fast enough

- equilibrated by sinks/sources (e.g. dislocations)
- can be regarded $\mu_V = 0$
- $C_V \approx C_V^{eq}$



Cont.d

$$C_1 \frac{\partial \mu_1}{\partial x} + C_2 \frac{\partial \mu_2}{\partial x} = 0 \Rightarrow \frac{\partial \mu_2}{\partial x} = -\frac{C_1}{C_2} \frac{\partial \mu_1}{\partial x}$$

$$\Rightarrow J_1^c = -L_{11} \frac{\partial \mu_1}{\partial x} - L_{12} \cdot \left(-\frac{C_1}{C_2} \right) \cdot \frac{\partial \mu_1}{\partial x}$$

$$= - \left[L_{11} - L_{12} \frac{C_1}{C_2} \right] \frac{\partial \mu_1}{\partial x}$$

similarly $J_2^c = - \left[L_{22} - L_{21} \frac{C_2}{C_1} \right] \frac{\partial \mu_2}{\partial x}$

We just want to see

$$J_1^c = f(c_1) \text{ possible?}$$

General rel. between μ & c → molar fraction

$$\mu_i = \mu_i^0 + k_B T \ln (\gamma_i \cdot x_i)$$

↑ activity coeff

$$= \mu_i^0 + k_B T \ln (\gamma_i \cdot \langle \Omega \rangle \cdot c_i)$$

$$\Rightarrow \frac{\partial \mu_i}{\partial x} = \frac{\partial k_B T}{\partial x} \ln (\gamma_i \cdot \langle \Omega \rangle \cdot c_i)$$

$$= \frac{\partial}{\partial x} [k_B T (\ln \gamma_i + \ln \langle \Omega \rangle + \ln c_i)]$$

$$= \frac{\partial}{\partial \ln c_i} [k_B T (\ln \gamma_i + \ln \langle \Omega \rangle + \ln c_i)] \cdot \frac{\partial \ln c_i}{\partial x} \quad (\text{chain rule})$$

Dimensionless
 $c_i \in \text{avg } N^{\#}$

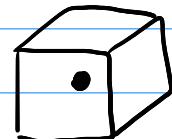
site
 $\langle \Omega \rangle \in \frac{1}{\text{Vol frac}}$

$$= k_B T \left(\frac{\partial \ln \gamma_i}{\partial \ln c_i} + \frac{\partial \ln \langle \Omega \rangle}{\partial \ln c_i} + 1 \right)$$

$$= k_B T \left(1 + \frac{\partial \ln \gamma_i}{\partial \ln c_i} + \frac{\partial \ln \langle \Omega \rangle}{\partial \ln c_i} \right) \cdot \frac{1}{c_i} \frac{\partial c_i}{\partial x}$$

$$\langle \Omega \rangle = V^{\text{tot}} / N^{\text{tot}}$$

$\langle \Omega \rangle$ = average site volume



$$\uparrow \text{volume } \langle \Omega \rangle \Rightarrow \frac{[V]}{[Sites]}$$

c_i ← KOM book fashion
number density

$$[\text{particles}] / [\text{volume}]$$

$$\chi_i = [\text{particles}] / [\text{sites}]$$

$$= \langle \Omega \rangle \cdot c_i$$

If use SI units

$$c_i \Rightarrow [\text{mol}] / [\text{volume}]$$

$$\langle \Omega \rangle \Rightarrow [\text{volume}] / [\text{sites}]$$

$$\chi_i = c_i \cdot \langle \Omega \rangle / N_A$$

↑ angstrom N[#]

$$J_1^C = -k_B T \cdot \left(L_{11} - \frac{c_1}{c_2} L_{12} \right) \left(1 + \frac{\partial \ln \gamma_1}{\partial \ln c_1} + \frac{\partial \ln \langle \sigma \rangle}{\partial \ln c_1} \right) \cdot \frac{1}{c_1} \cdot \frac{\partial c_1}{\partial x}$$

$$= -k_B T \left(\frac{L_{11}}{c_1} - \frac{L_{12}}{c_2} \right) \left(1 + \frac{\partial \ln \gamma_1}{\partial \ln c_1} + \frac{\partial \ln \langle \sigma \rangle}{\partial \ln c_1} \right) \frac{\partial c_1}{\partial x}$$

\Downarrow

D_1 (intrinsic diffusivity ; C-frame)

Comparison

Naive Fick (1 comp)

$$J = -L_{11} \frac{\partial M}{\partial x}$$

$$= -\frac{L_{11} \cdot k_B T}{C} \frac{\partial C}{\partial x}$$

D

Self Diffusivity

$$J_1^* = -k_B T \left[\frac{L_{11}}{c_1} - \frac{L_{11}^*}{c_1^*} \right] \frac{\partial c_1}{\partial x}$$

D_1^*

It means in C-frame, we have the intrinsic diffusivity related to self-diffusivity

$$D_1 = k_B T \left(\frac{L_{11}}{c_1} - \frac{L_{12}}{c_2} \right) \left(1 + \frac{\partial \ln \gamma_1}{\partial \ln c_1} + \frac{\partial \ln \langle \sigma \rangle}{\partial \ln c_1} \right)$$

if L_{12}/c_1 is small

$$\doteq D_1^* \left(1 + \frac{\partial \ln \gamma_1}{\partial \ln c_1} \right)$$

average $\langle \sigma \rangle$
conc-independent

Intrinsic diffusivity is self-diffusivity but considering mixing activity coeff

We cannot assume $\gamma_1 = 1$!

Summary: In all C-frame cases, diffusivity has Fick term !

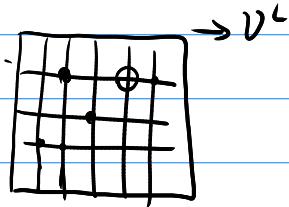
Interdiffusion : V-frame

We know that at C-frame, $\overleftarrow{J_1} \overrightarrow{J_2}$
 (vacancy must have a flux).
 C_v in V inside diffusion regime is also const.
 Contradiction?

No, what's happening is

$$J_v^C = -D_v \frac{dc_v}{dx} + c_v \cdot v_{ref}^C$$

\downarrow zero \downarrow non-zero!



Vacancies experience a drift velocity in C-frame

Lattice plane (in lab frame) moves oppositely to J_v^C

The lattice plane must move with velocity v !

Without specifying, we can write

$$J_1^v = J_1^C + c_1 v$$

$$J_2^v = J_2^C + c_2 v$$

What is J_v^v ?

$$J_1^v = \frac{[\text{amount}]}{[\text{Area} \cdot \text{Time}]} \quad J_1^v \cdot \Delta v_1 \Rightarrow \text{vol change by 1-flux}$$

value fraction 1

$$J_1^v \Delta v_1 + J_2^v \Delta v_2 = 0 \quad (\text{Because } c_1 \Delta v_1 + c_2 \Delta v_2 = 1)$$

$$\Rightarrow \left(-D_1 \frac{dc_1}{dx} + c_1 v \right) \cdot \Delta v_1 + \left(-D_2 \frac{dc_2}{dx} + c_2 v \right) \cdot \Delta v_2 = 0$$

Cont. d

$$\Rightarrow \left(-D_1 \frac{dc_1}{dx} + c_1 v \right) \cdot \Delta \Omega_1 + \left(-D_2 \frac{dc_2}{dx} + c_2 v \right) \cdot \Delta \Omega_2 = 0$$

$$-D_1 \Delta \Omega_1 \frac{dc_1}{dx} + \boxed{c_1 \Delta \Omega_1 v} - D_2 \Delta \Omega_2 \frac{dc_2}{dx} + \boxed{c_2 \Delta \Omega_2 v} = 0$$

$$\Rightarrow v = D_1 \Delta \Omega_1 \frac{dc_1}{dx} + D_2 \Delta \Omega_2 \frac{dc_2}{dx} \quad \begin{matrix} c_1 \Delta \Omega_1 + c_2 \Delta \Omega_2 = 1 \\ \text{(also } \Delta \Omega_1 \cdot d c_1 = -\Delta \Omega_2 \cdot d c_2 \text{)} \end{matrix}$$
$$= (D_1 - D_2) \Delta \Omega_1 \frac{dc_1}{dx}$$

This is the lattice drift in the V-frame!

Sign? $D_1 > D_2$, $v > 0 \Rightarrow$ lattice plane drift to right

Eventually, we want a V-frame flux eqn.

$$J_1^V = \boxed{C\text{-diff}} + \boxed{V\text{-drift}}$$

$$= -D_1 \frac{\partial c}{\partial x} + v \cdot c_1$$

$$= -D_1 \frac{\partial c}{\partial x} + (D_1 - D_2) \cdot \Delta \Omega_1 \cdot c_1 \cdot \frac{\partial c_1}{\partial x}$$

$$= -(D_1 - (D_1 - D_2) \cdot \Delta \Omega_1 c_1) \frac{\partial c_1}{\partial x}$$

$$= -(D_1 \Delta \Omega_2 \cdot c_2 + D_2 \Delta \Omega_1 \cdot c_1) \frac{\partial c_1}{\partial x}$$

$$= -(D_1 x_2 + D_2 x_1) \cdot \frac{\partial c_1}{\partial x}$$

$$= -\tilde{D} \frac{\partial c_1}{\partial x}$$

molar fraction

$$\text{So } J_1^V = - \tilde{D} \frac{\partial c_1}{\partial x}$$

$$\text{symmetry} \Rightarrow J_2^V = - \tilde{D} \frac{\partial c_2}{\partial x} \quad (J_V^V = 0 !)$$

$\tilde{D} \Rightarrow$ interdiffusivity

$$= D_1 \Omega_2 c_2 + D_2 \Omega_1 c_1$$

$\begin{matrix} \nwarrow \\ \text{intrinsic} \\ D_1 \end{matrix} \quad \begin{matrix} \searrow \\ \text{fraction} \\ 2 \end{matrix}$

Summary:

1. C-frame \Rightarrow 1 & 2 have different diffusivity (intrinsic)

frame drift seen for vacancy

2. V-frame \Rightarrow (Only 1 diffusivity interdiff)

frame velocity implicit

(Undergrad mass transfer course)

$$N_A = -D_A \frac{dc}{dx} + (N_A + N_B) \cdot C/C_T$$

What effect do we see from lattice drift?

• Kirkendall effect

Interstitial diffusion

fast moving particle \rightarrow immobile solvent

Interdiffusivity $\tilde{D} = D_1 \Omega_2 C_2 + D_2 \Omega_1 C_1$
 $\Rightarrow 0$

$$= D_1 \Omega_2 C_2$$