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Recap of Lecture 05

Key ideas from last lecture:

o Different forms of diffusivities
e Deriving diffusivity from driving force terms
o Differentiate reference frames used for diffusion equations

Recap: Intrinsic Diffusivity Expression

For component i (notation from notes)
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Recap: Interdiffusivity (Binary)
Binary mixture

1312 = D38y + Dycy €y

o ();: partial molar volume factor in your notation
e Both C-frame and V-frame still lead to Fick-type equations

Learning Outcomes

After today’s lecture, you will be able to:

o Interpret Kirkendall effect using lattice (C-frame) vs lab (V-frame)

o Solve steady-state diffusion (Laplace equation) in common geometries

o Use non-steady solutions: Gaussian / error function / superposition

o Use separation of variables and Laplace transform as solution strategies

Remaining Question 1: Kirkendall Effect
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Figure 1: Kirkendall effect demo



Key observation

¢ In diffusion couple, markers move relative to lab frame
o Indicates unequal intrinsic fluxes in lattice frame

C-frame vs V-frame Fluxes

C-frame (lattice frame)
» net lattice flux can be nonzero: Jj, # 0

V-frame (lab frame)

JY=—JY  JY=0
Interpretation

o Ji# 0 but JY = 0 implies defect accumulation / depletion

Kirkendall Effect: Physical Meaning

Experimentally measured lattice shift

o Markers track lattice (or marker plane)

e Unequal intrinsic fluxes = vacancy flux

e Vacancy imbalance = defect accumulation in control volume
e Can produce porosity (Kirkendall voids)




Kirkendall Effect: Analog
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o A diffuse faster than B across the membrane
o p; =¢RT
¢ Fixed membrane expanding voids

Kirkendall Effect: Simulations

See simulation of vacancy mechanism

Credit: Dissemination of IT for the Promotion of Materials Science (DolTPoMS), University
of Cambridge



https://www.doitpoms.ac.uk/tlplib/diffusion/HTML5/kirkendall.html

Remaining Question 2: Interstitial Diffusion Setup

Position of interstitial Position of interstitial
atom before diffusion atom after diffusion
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More rapid than vacancy diffusion

Figure 2: Interstitial diffusion

Model ideas:

o species 1 diffuses through sites of 2 (interstitial)
e atoms of 2 are much heavier than 1
e what is the interdiffusivity D?

Mobility and Diffusivity in C-frame

C-frame velocity

Then

and (using Onsager coefficient notation)



L
D, = p,T

Connection

o this matches Nernst—FEinstein type relation

V-frame Analysis

Special Case: Diffusivity of 2 — 1 with Dy =0

e species 2 immobile: $D_2=0
o drift velocity related to dc, /0x
o similar to “diffusion through solvent” in mass transfer
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V-frame: Effective Diffusivity

The interdiffusivity now becomes:

= Dz,

e o is the fraction of lattice particles (usually 1).

o interdiffusivity depends on “how many sites” the smaller species can use

o this expression only applicable for interstitial diffusion!



Driving Forces Beyond Chemical Potential

We often used p,; as driving force for diffusion, but other contributions exist.

Generalized “diffusion potential”:

(I)i:,“z“i‘znj
J

vacancy mechanism / site availability
electromigration

external pressure / stress effects
capillarity / surface curvature effects
etc.

How Do We Determine D?

General experimental workflow:

impose initial concentration + geometry
evolve for time ¢t > 0

measure profile ¢(x,t) (or length scale)
fit to model solution = D

Forward Problem vs Inverse Problem

Given

geometry + initial /boundary conditions
candidate D

Predict

concentration profile ¢(z,t)

Inverse

infer D from measured c(z,t)



What Do We Learn In The Following Lectures?

o We want analytical + numerical solutions to the diffusion equations (Fick’s laws)
e Start with steady state, then non-steady state.

e Covering general formula, and geometries

Fick’s Second Law (1D, constant D)

Assuming homogeneous isotropic constant D
dc 0%c
ot Ox?
To solve we must specify

o initial condition: ¢(z,0)
e boundary conditions: ¢(0,t), ¢(L,t) or flux BC

Part I: Steady State Diffusion

Steady state

0

o0 = V=0
ot

This is Laplace equation, having solution in 1D:
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1D Steady State: Dirichlet BC Example

If ¢(0) = c® and ¢(L) = ¢t

Then
L .0
c(a:):co+c LC:L'
and flux
de el — b
J=—D—=-D
dx L

Cylindrical Steady State (Radial)

For axisymmetric ¢ = ¢(r)

Integrate twice

c(r) =k;Inr + ky

Cylinder: Apply BC at r,, 7,

If c(ry) = ¢; and ¢(ry) = ¢y

Then

Cy —Cy r
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Spherical Steady State (Radial)

For ¢ = ¢(r)

Integrate to get

Sphere: Apply BC at r, 7,

If ¢(ry) = ¢, c(ry) = ¢y

One convenient form

Spatially Varying Diffusivity in Steady State

Notes: still solvable if D depends on 1 variable (e.g. x or r)
Steady 1D with constant flux J

So

dc J Tl
%:—D(@ :c(m):c(xo)—J/wo de

Often requires numerical integration for D(§).

¢ Dirchlet boundary directly integration
e Neumann boundary need to fix dc/dz at boundary
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Part Il: Non-steady State Diffusion

Different strategies

¢ superposition with known “source” solutions
o separation of variables (finite domains)

o Laplace transform (initial condition handling)
o numerical methods (general geometry / D(c))

Method 1: Superposition of Known Solutions

Use linearity of diffusion equation

If ¢, and ¢, satisfy the PDE and BCs, then
c=c,t¢

also satisfies (with compatible IC/BC decomposition).

Inifinite Space: Half-Half Situation
Geometry: x >0
I.C.

e c(x<0,t=0)=cp
o c(r>0,t=0)=cp

Solution form

How do we get here?
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Limits and Checks
o t = 0": erfe(z/(2vDt)) = 0forz >0 ¢ —cp

e x—0:erfc(0) =1 ¢(0,t) =cy
o x— o00: erfc(o0) =0 ¢ —cp

Next Steps
e Apply these solutions to real diffusion experiments

o Extract D by fitting measured ¢(z,t)
o Extend to variable D(c) and coupled diffusion (later)
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