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Recap of Lecture 05

Key ideas from last lecture:

• Different forms of diffusivities
• Deriving diffusivity from driving force terms
• Differentiate reference frames used for diffusion equations

Recap: Intrinsic Diffusivity Expression

For component 𝑖 (notation from notes)

𝐷∗
𝑖 = 𝑘𝐵𝑇 (𝐿𝑖𝑖

𝑐𝑖
−

𝐿𝑖𝑗

𝑐𝑗
)

𝐷𝑖 = 𝑘𝐵𝑇 (𝐿𝑖𝑖
𝑐𝑖

−
𝐿𝑖𝑗

𝑐𝑗
) (1 + 𝜕 ln 𝛾𝑖

𝜕 ln 𝑐𝑖
)

whereas

Φ(𝑐) = 1 + 𝜕 ln 𝛾𝑖
𝜕 ln 𝑐𝑖
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Recap: Interdiffusivity (Binary)

Binary mixture

𝐷̃12 = 𝐷1𝑐2Ω2 + 𝐷2𝑐1Ω1

• Ω𝑖: partial molar volume factor in your notation
• Both C-frame and V-frame still lead to Fick-type equations

Learning Outcomes

After today’s lecture, you will be able to:

• Interpret Kirkendall effect using lattice (C-frame) vs lab (V-frame)
• Solve steady-state diffusion (Laplace equation) in common geometries
• Use non-steady solutions: Gaussian / error function / superposition
• Use separation of variables and Laplace transform as solution strategies

Remaining Question 1: Kirkendall Effect

Figure 1: Kirkendall effect demo
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Key observation

• In diffusion couple, markers move relative to lab frame
• Indicates unequal intrinsic fluxes in lattice frame

C-frame vs V-frame Fluxes

C-frame (lattice frame)

• net lattice flux can be nonzero: 𝐽 ∗
𝑉 ≠ 0

V-frame (lab frame)

𝐽𝑉
𝐴 = −𝐽𝑉

𝐵, 𝐽𝑉
𝑉 = 0

Interpretation

• 𝐽 ∗
𝑉 ≠ 0 but 𝐽𝑉

𝑉 = 0 implies defect accumulation / depletion

Kirkendall Effect: Physical Meaning

Experimentally measured lattice shift

• Markers track lattice (or marker plane)
• Unequal intrinsic fluxes ⇒ vacancy flux
• Vacancy imbalance ⇒ defect accumulation in control volume
• Can produce porosity (Kirkendall voids)
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Kirkendall Effect: Analog

• A diffuse faster than B across the membrane
• 𝑝𝑖 = 𝑐𝑖𝑅𝑇
• Fixed membrane � expanding voids

Kirkendall Effect: Simulations

See simulation of vacancy mechanism

Credit: Dissemination of IT for the Promotion of Materials Science (DoITPoMS), University
of Cambridge
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Remaining Question 2: Interstitial Diffusion Setup

Figure 2: Interstitial diffusion

Model ideas:

• species 1 diffuses through sites of 2 (interstitial)
• atoms of 2 are much heavier than 1
• what is the interdiffusivity 𝐷̃?

Mobility and Diffusivity in C-frame

C-frame velocity

𝑣∗
𝑠 = 𝑀1

𝑐1
∇𝜇1

Then

𝐷1 = 𝑀1𝑘𝐵𝑇

and (using Onsager coefficient notation)
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𝐷1 = 𝐿11
𝑐1

𝑘𝐵𝑇

Connection

• this matches Nernst–Einstein type relation

V-frame Analysis

Special Case: Diffusivity of 2 → 1 with 𝐷2 = 0

• species 2 immobile: $D_2=0
• drift velocity related to 𝜕𝑐1/𝜕𝑥
• similar to “diffusion through solvent” in mass transfer

𝐽𝑉
1 = −𝐷1

𝜕𝑐1
𝜕𝑥

+ 𝑐1(𝐷1 − 0)Ω1
𝜕𝑐1
𝜕𝑥

(1)

= −𝐷1 (1 − 𝑐1Ω1) 𝜕𝑐1
𝜕𝑥

(2)

(3)

V-frame: Effective Diffusivity

The interdiffusivity now becomes:

𝐷̃ = 𝐷1Ω2𝑐2 (4)
= 𝐷1𝑥2 (5)

• 𝑥2 is the fraction of lattice particles (usually 1).
• interdiffusivity depends on “how many sites” the smaller species can use
• this expression only applicable for interstitial diffusion!
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Driving Forces Beyond Chemical Potential

We often used 𝜇𝑖 as driving force for diffusion, but other contributions exist.

Generalized “diffusion potential”:

Φ𝑖 = 𝜇𝑖 + ∑
𝑗

𝜂𝑗

• vacancy mechanism / site availability
• electromigration
• external pressure / stress effects
• capillarity / surface curvature effects
• etc.

How Do We Determine 𝐷?

General experimental workflow:

• impose initial concentration + geometry
• evolve for time 𝑡 > 0
• measure profile 𝑐(𝑥, 𝑡) (or length scale)
• fit to model solution ⇒ 𝐷

Forward Problem vs Inverse Problem

Given

• geometry + initial/boundary conditions
• candidate 𝐷

Predict

• concentration profile 𝑐(𝑥, 𝑡)

Inverse

• infer 𝐷 from measured 𝑐(𝑥, 𝑡)

7



What Do We Learn In The Following Lectures?

• We want analytical + numerical solutions to the diffusion equations (Fick’s laws)

• Start with steady state, then non-steady state.

• Covering general formula, and geometries

Fick’s Second Law (1D, constant 𝐷)

Assuming homogeneous isotropic constant 𝐷

𝜕𝑐
𝜕𝑡

= 𝐷 𝜕2𝑐
𝜕𝑥2

To solve we must specify

• initial condition: 𝑐(𝑥, 0)
• boundary conditions: 𝑐(0, 𝑡), 𝑐(𝐿, 𝑡) or flux BC

Part I: Steady State Diffusion

Steady state

𝜕𝑐
𝜕𝑡

= 0 ⇒ ∇2𝑐 = 0

This is Laplace equation, having solution in 1D:

𝑑2𝑐
𝑑𝑥2 = 0 ⇒ 𝑐(𝑥) = 𝐶1𝑥 + 𝐶2
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1D Steady State: Dirichlet BC Example

If 𝑐(0) = 𝑐0 and 𝑐(𝐿) = 𝑐𝐿

Then

𝑐(𝑥) = 𝑐0 + 𝑐𝐿 − 𝑐0

𝐿
𝑥

and flux

𝐽 = −𝐷 𝑑𝑐
𝑑𝑥

= −𝐷𝑐𝐿 − 𝑐0

𝐿

Cylindrical Steady State (Radial)

For axisymmetric 𝑐 = 𝑐(𝑟)

∇2𝑐 = 1
𝑟

𝑑
𝑑𝑟

(𝑟𝑑𝑐
𝑑𝑟

) = 0

Integrate twice

𝑐(𝑟) = 𝑘1 ln 𝑟 + 𝑘2

Cylinder: Apply BC at 𝑟1, 𝑟2

If 𝑐(𝑟1) = 𝑐1 and 𝑐(𝑟2) = 𝑐2

Then

𝑐(𝑟) = 𝑐1 + 𝑐2 − 𝑐1
ln(𝑟2/𝑟1)

ln ( 𝑟
𝑟1

)
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Spherical Steady State (Radial)

For 𝑐 = 𝑐(𝑟)

∇2𝑐 = 1
𝑟2

𝑑
𝑑𝑟

(𝑟2 𝑑𝑐
𝑑𝑟

) = 0

Integrate to get

𝑐(𝑟) = −𝑘1
𝑟

+ 𝑘2

Sphere: Apply BC at 𝑟1, 𝑟2

If 𝑐(𝑟1) = 𝑐1, 𝑐(𝑟2) = 𝑐2

One convenient form

𝑐(𝑟) = 𝑐1 + 𝑐2 − 𝑐1

( 1
𝑟2

− 1
𝑟1

)
(1

𝑟
− 1

𝑟1
)

Spatially Varying Diffusivity in Steady State

Notes: still solvable if 𝐷 depends on 1 variable (e.g. 𝑥 or 𝑟)

Steady 1D with constant flux 𝐽

𝐽 = −𝐷(𝑥) 𝑑𝑐
𝑑𝑥

= const

So

𝑑𝑐
𝑑𝑥

= − 𝐽
𝐷(𝑥)

⇒ 𝑐(𝑥) = 𝑐(𝑥0) − 𝐽 ∫
𝑥

𝑥0

1
𝐷(𝜉)

𝑑𝜉

Often requires numerical integration for 𝐷(𝜉).

• Dirchlet boundary � directly integration
• Neumann boundary � need to fix 𝑑𝑐/𝑑𝑥 at boundary
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Part II: Non-steady State Diffusion

Different strategies

• superposition with known “source” solutions
• separation of variables (finite domains)
• Laplace transform (initial condition handling)
• numerical methods (general geometry / 𝐷(𝑐))

Method 1: Superposition of Known Solutions

Use linearity of diffusion equation

If 𝑐𝑎 and 𝑐𝑏 satisfy the PDE and BCs, then

𝑐 = 𝑐𝑎 + 𝑐𝑏

also satisfies (with compatible IC/BC decomposition).

Inifinite Space: Half-Half Situation

Geometry: 𝑥 ≥ 0

I.C.

• 𝑐(𝑥 < 0, 𝑡 = 0) = 𝑐𝐿
• 𝑐(𝑥 > 0, 𝑡 = 0) = 𝑐𝑅

Solution form

𝑐(𝑥, 𝑡) = 𝑐𝐿 + 𝑐𝑅
2

+ 𝑐𝐿 − 𝑐𝑅
2

erf ( 𝑥√
2𝐷𝑡

)

How do we get here?
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Limits and Checks

• 𝑡 → 0+: erfc(𝑥/(2
√

𝐷𝑡)) → 0 for 𝑥 > 0 � 𝑐 → 𝑐𝐵
• 𝑥 → 0: erfc(0) = 1 � 𝑐(0, 𝑡) = 𝑐𝐴
• 𝑥 → ∞: erfc(∞) = 0 � 𝑐 → 𝑐𝐵

Next Steps

• Apply these solutions to real diffusion experiments
• Extract 𝐷 by fitting measured 𝑐(𝑥, 𝑡)
• Extend to variable 𝐷(𝑐) and coupled diffusion (later)
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