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Recap of Lecture 06

Key ideas from last lecture:

• Governing equation for diffusion problems
• Steady state solutions to diffusion problems (without convection)
• Introduction to nonsteady state diffusion solutions

Recap: Steady-State Solutions to Diffusion Equations

Just to solve Laplace equation ∇2𝑐 = 0. But ∇2 terms depend on the coordinate system!

• Cartesian: 𝑐(𝑥) = 𝑘1𝑥 + 𝑘2
• Cylindrical: 𝑐(𝑟) = 𝑘1 ln 𝑟 + 𝑘2
• Spherical: 𝑐(𝑟) = 𝑘1/𝑟 + 𝑘2

𝑘1, 𝑘2 are determined by the boundary conditions.

• Can we determine 𝐷 using steady state profile?

Influence of Geometry on S.S. Solutions

Learning Outcomes

After today’s lecture, you will be able to:

• Recall analytical solutions to diffusion problems
• Analyze superposition of the source method in diffusion problems
• Analyze the diffusion length scale in

√
4𝐷𝑡 and its implications
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• Describe the key process in separation of variables method
• Apply Laplace transform in initial value problems

Part II: Non-steady State Diffusion

Different strategies (review)

• Superposition with known “source” solutions
• Separation of variables (finite domains)
• Laplace transform (initial condition handling)
• Numerical methods (general geometry / 𝐷(𝑐))

Dimensionless Transform of Diffusion

• Analysis of many diffusion problems will benefit by transforming into dimensionless forms

• Diffusion length scale
√

𝐷𝑡 (or
√

4𝐷𝑡)

• Dimensionless variable 𝜂 = 𝑥√
𝐷𝑡

• Transform from ODE to PDE

𝜕𝑐
𝜕𝑡

= 𝐷 𝜕2𝑐
𝜕𝑥2 (1)

𝜕𝑐
𝜕𝜂

= −𝜂
2

𝜕2𝑐
𝜕𝜂2 (2)

Solution to Dimensionless Diffusion Problem

• Step 1: Let 𝑢 = 𝜕𝑐
𝜕𝜂

𝑢 = 𝐶1 exp(−1
4

𝜂2)

• Step 2: integrate 𝑢 = 𝜕𝑐
𝜕𝜂

𝑐(𝜂) = 𝐾1 + 𝐾2 erf(𝜂
2

)

where erf(𝜉) = 2√
𝜋 ∫𝜉

0
𝑒−𝑥2𝑑𝑥 is the error function
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• Step 3: fit initial condition and boundary conditions (the hardest part!)

• How do the solution look like?

Inifinite Space: Half-Half Situation

Geometry: 𝑥 ≥ 0

I.C.

• 𝑐(𝑥 < 0, 𝑡 = 0) = 𝑐𝐿
• 𝑐(𝑥 > 0, 𝑡 = 0) = 𝑐𝑅

Solution form

𝑐(𝑥, 𝑡) = 𝑐𝐿 + 𝑐𝑅
2

+ 𝑐𝐿 − 𝑐𝑅
2

erf ( 𝑥√
4𝐷𝑡

)

How do we get here?

Limits and Checks

• 𝑡 → 0+: erfc(𝑥/(
√

4𝐷𝑡)) → 0 for 𝑥 > 0 � 𝑐 → 𝑐𝑅
• 𝑡 → 0+: erfc(𝑥/(

√
4𝐷𝑡)) → 0 for 𝑥 > 0 � 𝑐 → 𝑐𝐿

• 𝑥 → ∞: erfc(∞) = 0 � 𝑐 → 𝑐𝐿+𝑐𝑅
2

• Takes infinite amount of time to reach steady-state, but we can often take intermediate
snapshots

Inifinite Space: Half-Half Situation Time Scale
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Line Source as Superposition

Notes: “line source” can be built from two semi-infinite problems. For a line source with
concentration 𝑐0 and thickness 𝛿, solution 𝑐(𝑥, 𝑡) follows

𝑐(𝑥, 𝑡) = 𝑐1(𝑥, 𝑡) + 𝑐2(𝑥, 𝑡)

Idea:

• 𝑐1 and 𝑐2 are solutions for 2 semi-infinite geometries
• decompose initial profile into steps
• add corresponding erfc solutions

Superposition Solution For Slab Geometry

• Step 1: write 2 half-space solutions

𝑐1(𝑥, 𝑡) = 𝑐0
2

+ 𝑐0
2

erf( 𝑥√
4𝐷𝑡

) (3)

𝑐2(𝑥, 𝑡) = −𝑐0
2

− 𝑐0
2

erf( 𝑥 − 𝛿√
4𝐷𝑡

) (4)

• Step 2: combine them!

𝑐(𝑥, 𝑡) = 𝑐0
2

[erf( 𝑥√
4𝐷𝑡

) − erf( 𝑥 − 𝛿√
4𝐷𝑡

)] (5)

is obtained by superposition and is valid under the following conditions:

Infinite Domain: Point Source (1D)

Initial conditions

𝑐(𝑥, 0) = 𝑁 𝛿(𝑥)

Solution (thin-film limit)

𝑐(𝑥, 𝑡) = 𝑁√
4𝜋𝐷𝑡

exp (− 𝑥2

4𝐷𝑡
)
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Gaussian Interpretation

• point source spreads as a Gaussian
• variance grows linearly with time

𝜎2 = 2𝐷𝑡

So width 𝜎 ∼
√

2𝐷𝑡.

Error Function and Gaussian Integral

Define

erf(𝑧) = 2√
𝜋

∫
𝑧

0
𝑒−𝑠2 𝑑𝑠

and

erfc(𝑧) = 1 − erf(𝑧)

These appear in semi-infinite diffusion solutions.

Step Source

Finite step (width Δ𝑥) can be treated as

• difference of two semi-infinite step solutions
• in the limit Δ𝑥 → 0 recovers point source Gaussian
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3D Point Source

𝑐 is separabile across axes!

For 3D infinite space

𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑁
(4𝜋𝐷𝑡)3/2 exp (−𝑥2 + 𝑦2 + 𝑧2

4𝐷𝑡
)

General Principle: Linear PDE → Build Solutions

Because diffusion equation is linear (for constant 𝐷)

• complex IC can be decomposed into simpler components
• solutions are sums (or integrals) of known kernels

Hard part

• enforcing boundary conditions in finite domains

Method 2: Separation of Variables

Used often for finite domains

Assume product form

𝑐(𝑥, 𝑡) = 𝑋(𝑥) 𝑇 (𝑡)

Substitute into

𝜕𝑐
𝜕𝑡

= 𝐷 𝜕2𝑐
𝜕𝑥2

gives

1
𝐷𝑇

𝑑𝑇
𝑑𝑡

= 1
𝑋

𝑑2𝑋
𝑑𝑥2 = −𝜆2
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Time Part and Spatial Eigenfunctions

Time ODE

𝑑𝑇
𝑑𝑡

= −𝜆2𝐷 𝑇 ⇒ 𝑇 (𝑡) = exp(−𝜆2𝐷𝑡)

Space ODE

𝑑2𝑋
𝑑𝑥2 + 𝜆2𝑋 = 0

Solutions depend on BCs (sine/cosine, etc.).

Eigenvalues from Boundary Conditions

• Dirichlet BC � 𝜆𝑛 = 𝑛𝜋/𝐿
• Neumann BC � 𝜆𝑛 = 𝑛𝜋/𝐿 with different eigenfunctions
• Mixed BC � different transcendental conditions

Physical meaning in notes

• 𝜆 sets spatial wavelength ∼ 1/𝜆
• higher 𝑛 modes decay faster (via 𝑒−𝜆2𝐷𝑡)

General Series Solution Form

Superposition over modes

𝑐(𝑥, 𝑡) =
∞

∑
𝑛=0

𝐴𝑛𝑋𝑛(𝑥) 𝑒−𝜆2
𝑛𝐷𝑡

Coefficients 𝐴𝑛 from initial condition projection.
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Modal Picture: What Decays First?

• high spatial-frequency components (large 𝜆𝑛) vanish quickly
• long-wavelength components persist longer
• diffusion acts as a low-pass filter on concentration profiles

Method 3: Laplace Transform (Time Domain)

Notes: convert time-dependence into algebraic parameter 𝑝

Define

̂𝑐(𝑥, 𝑝) = ℒ{𝑐(𝑥, 𝑡)} = ∫
∞

0
𝑒−𝑝𝑡𝑐(𝑥, 𝑡) 𝑑𝑡

Laplace transform replaces time derivative with initial-value term.

Key Property: Transform of 𝜕𝑐/𝜕𝑡

Using integration by parts (as in notes)

ℒ {𝜕𝑐
𝜕𝑡

} = 𝑝 ̂𝑐(𝑥, 𝑝) − 𝑐(𝑥, 0)

Spatial derivatives remain derivatives in 𝑥:

ℒ { 𝜕2𝑐
𝜕𝑥2 } = 𝜕2 ̂𝑐

𝜕𝑥2
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Fick’s 2nd Law in Laplace Space

Transform

𝜕𝑐
𝜕𝑡

= 𝐷 𝜕2𝑐
𝜕𝑥2

becomes

𝑝 ̂𝑐(𝑥, 𝑝) − 𝑐(𝑥, 0) = 𝐷 𝜕2 ̂𝑐
𝜕𝑥2

Now an ODE in 𝑥 (parameter 𝑝).

Example Setup: Semi-infinite with Fixed Surface

From notes example

• 𝑐(𝑥, 0) = 0 for 𝑥 > 0
• 𝑐(0, 𝑡) = 𝑐0
• 𝑐(∞, 𝑡) = 0

Boundary conditions in Laplace domain

̂𝑐(0, 𝑝) = 𝑐0
𝑝

, ̂𝑐(∞, 𝑝) = 0

Solve ODE in 𝑥

With 𝑐(𝑥, 0) = 0, equation reduces to

𝐷 𝜕2 ̂𝑐
𝜕𝑥2 − 𝑝 ̂𝑐 = 0

General solution

̂𝑐(𝑥, 𝑝) = 𝐴𝑒+√𝑝/𝐷 𝑥 + 𝐵𝑒−√𝑝/𝐷 𝑥

Semi-infinite boundedness � 𝐴 = 0.
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Apply BC at 𝑥 = 0

At 𝑥 = 0

̂𝑐(0, 𝑝) = 𝐵 = 𝑐0
𝑝

So

̂𝑐(𝑥, 𝑝) = 𝑐0
𝑝

exp (−√ 𝑝
𝐷

𝑥)

Back-transform: Error Function Result

Inverse Laplace yields the erfc solution (notes)

𝑐(𝑥, 𝑡) = 𝑐0 erfc ( 𝑥
2
√

𝐷𝑡
)

Interpretation

• Laplace method packaged IC automatically into transformed equation
• remaining work: solve ODE in 𝑥 + apply BCs

General Laplace Workflow (Notes Summary)

1) Write PDE and IC/BC

2) Laplace in time: 𝑐 → ̂𝑐(𝑥, 𝑝)

3) Solve ODE in 𝑥 (parameter 𝑝)

4) Fit BCs (Dirichlet / Neumann) to get coefficients

5) Invert transform (analytic or numeric)
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Meaning of the 𝑝-space Parameter

From your sketch (page 17)

• ̂𝑐(𝑥, 𝑝) is a weighted time integral of 𝑐(𝑥, 𝑡)
• large 𝑝 emphasizes early-time behavior
• small 𝑝 emphasizes long-time behavior

Conceptual plots

• 𝑐(𝑥, 𝑡) evolves in 𝑡
• ̂𝑐(𝑥, 𝑝) “compresses” time into the 𝑝 axis

When to Use Which Method?

• Known source solutions + superposition

– infinite / semi-infinite, simple BCs

• Separation of variables

– finite domains, classical BCs, eigenfunction expansions

• Laplace transform

– strong control over initial conditions, semi-infinite problems

• Numerical

– complex geometry, nonlinear 𝐷(𝑐), complicated BCs

Summary

• Steady state � Laplace equation ∇2𝑐 = 0 (solve by geometry)
• Non-steady constant-𝐷 diffusion is linear
• Key kernels: Gaussian (point source) and erfc (semi-infinite boundary)
• Separation of variables: eigenmodes decay as 𝑒−𝜆2

𝑛𝐷𝑡

• Laplace transform: time derivative becomes 𝑝 ̂𝑐 − 𝑐(𝑥, 0), ODE in 𝑥
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Next Steps

• Numerical solutions to diffusion problems
• Estimation of diffusivity from solutions
• Introduction to atomic model of diffusion
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