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Recap of Lecture 06

Key ideas from last lecture:

e Governing equation for diffusion problems
» Steady state solutions to diffusion problems (without convection)
¢ Introduction to nonsteady state diffusion solutions

Recap: Steady-State Solutions to Diffusion Equations

Just to solve Laplace equation VZc = 0. But V? terms depend on the coordinate system!

o Cartesian: ¢(z) = ko + ky
o Cylindrical: ¢(r) =k, Inr + k,
o Spherical: ¢(r) =k, /r + ky

k,, k, are determined by the boundary conditions.

e Can we determine D using steady state profile?

Influence of Geometry on S.S. Solutions
Learning Outcomes

After today’s lecture, you will be able to:

¢ Recall analytical solutions to diffusion problems
e Analyze superposition of the source method in diffusion problems
e Analyze the diffusion length scale in /4Dt and its implications



¢ Describe the key process in separation of variables method
o Apply Laplace transform in initial value problems

Part IlI: Non-steady State Diffusion

Different strategies (review)

e Superposition with known “source” solutions
o Separation of variables (finite domains)

o Laplace transform (initial condition handling)
o Numerical methods (general geometry / D(c))

Dimensionless Transform of Diffusion

e Analysis of many diffusion problems will benefit by transforming into dimensionless forms

« Diffusion length scale v Dt (or V4Dt)

e Dimensionless variable n = %=

VDt
e Transform from ODE to PDE

Oc 0%c

ot~ Do M)
dc 1o

- 202 (2)

Solution to Dimensionless Diffusion Problem

e Step 1: Let u = g—;

1
u=C) eXP(—Z'?2)

dc
on

e Step 2: integrate u =
_ n
c(n) = K + K, erf(§)

where erf(§) = % fo'g e~**dz is the error function



o Step 3: fit initial condition and boundary conditions (the hardest part!)

e How do the solution look like?

Inifinite Space: Half-Half Situation
Geometry: x > 0
I.C.

o c(x<0,t=0)=cy
o c(r>0,t=0)=cp

Solution form

CL + CR CL — CR o
c(z,t) = + erf( )
2 V4Dt

How do we get here?

Limits and Checks

o t— 0" erfe(x/(V4Dt)) = 0forz >0 ¢ —cp

t — 0% erfe(z/(vV4Dt)) = 0forz >0 ¢ — ¢

x — oo: erfc(oo) =0 c%%

e Takes infinite amount of time to reach steady-state, but we can often take intermediate
snapshots

Inifinite Space: Half-Half Situation Time Scale




Line Source as Superposition

Notes: “line source” can be built from two semi-infinite problems. For a line source with

concentration ¢, and thickness 4, solution ¢(z,t) follows

c(x,t) = ¢y (z,t) + co(x, 1)

Idea:

e ¢, and ¢, are solutions for 2 semi-infinite geometries
e decompose initial profile into steps
e add corresponding erfc solutions

Superposition Solution For Slab Geometry

e Step 1: write 2 half-space solutions

cfa,t) =3+ rf(%)
rlot) == = Dt )

e Step 2: combine them!

(1) = 2 [eff(\/éffm> _erf(%ﬂ

is obtained by superposition and is valid under the following conditions:

Infinite Domain: Point Source (1D)

Initial conditions

Solution (thin-film limit)

N 2
c(:c,t):\/mexp ~ 1Dt




Gaussian Interpretation

e point source spreads as a Gaussian
o variance grows linearly with time

o2 =2Dt

So width o ~ vV2Dt.

Error Function and Gaussian Integral

Define

and

erfc(z) = 1 —erf(z)

These appear in semi-infinite diffusion solutions.

Step Source

Finite step (width Az) can be treated as

o difference of two semi-infinite step solutions
e in the limit Az — 0 recovers point source Gaussian




3D Point Source

¢ is separabile across axes!

For 3D infinite space

C(%?J,Za )_ (47’[’Dt)3/2 €xXp | — ADt

General Principle: Linear PDE — Build Solutions

Because diffusion equation is linear (for constant D)

e complex IC can be decomposed into simpler components
o solutions are sums (or integrals) of known kernels

Hard part

 enforcing boundary conditions in finite domains

Method 2: Separation of Variables

Used often for finite domains

Assume product form

Substitute into

oc_ 0%
ot 0x?
gives

LdiT_ldziX_ 22
DTdt X dz2




Time Part and Spatial Eigenfunctions

Time ODE
T
CCZTt =-X\2DT = T(t) = exp(=\2Dt)
Space ODE
d*>X
—— + XX =0
dx? +

Solutions depend on BCs (sine/cosine, etc.).

Eigenvalues from Boundary Conditions

o Dirichlet BC A, =nn/L
o Neumann BC )\, = nn/L with different eigenfunctions
o Mixed BC different transcendental conditions

Physical meaning in notes

o )\ sets spatial wavelength ~ 1/\

« higher n modes decay faster (via e **Pt)

General Series Solution Form

Superposition over modes

c(x,t) = Z A, X, (z)e 2Dt
n=0

Coefficients A,, from initial condition projection.




Modal Picture: What Decays First?

« high spatial-frequency components (large A, ) vanish quickly
o long-wavelength components persist longer
o diffusion acts as a low-pass filter on concentration profiles

Method 3: Laplace Transform (Time Domain)

Notes: convert time-dependence into algebraic parameter p

Define

é(z,p) = L{c(z,t)} = /OO e Ple(x,t)dt
0

Laplace transform replaces time derivative with initial-value term.

Key Property: Transform of Oc/0t
Using integration by parts (as in notes)

£ {g;} = pé(xz,p) — ¢(x,0)

Spatial derivatives remain derivatives in x:

0%c 0%¢
ﬁ{ax} = o2




Fick’s 2nd Law in Laplace Space

Transform

oo _ e
ot Ox2

becomes
03¢

pc(z,p) —c(z,0) = D@

Now an ODE in z (parameter p).

Example Setup: Semi-infinite with Fixed Surface

From notes example

e ¢(x,0)=0forz>0
e ¢(0,t) = ¢
o c(00,t) =0

Boundary conditions in Laplace domain

~ C ~
é0,p) ==, &(o0,p) =0
p
Solve ODE in z
With ¢(z,0) = 0, equation reduces to
0%¢ .
D@ — pc = 0

General solution

é(z,p) = AetVP/Pr 4 Be=VP/D2

Semi-infinite boundedness A = 0.



Apply BC at x =0

Atz =0

So

Back-transform: Error Function Result

Inverse Laplace yields the erfc solution (notes)

c(z,) = ¢, erfc (2\?&)

Interpretation

o Laplace method packaged IC automatically into transformed equation
e remaining work: solve ODE in x 4+ apply BCs

General Laplace Workflow (Notes Summary)
1) Write PDE and IC/BC
2) Laplace in time: ¢ — ¢(x,p)
3) Solve ODE in x (parameter p)
4) Fit BCs (Dirichlet / Neumann) to get coefficients

5) Invert transform (analytic or numeric)
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Meaning of the p-space Parameter

From your sketch (page 17)

o ¢(z,p) is a weighted time integral of c(x, )
¢ large p emphasizes early-time behavior
o small p emphasizes long-time behavior

Conceptual plots

e ¢(x,t) evolves in t
e ¢(z,p) “compresses” time into the p axis

When to Use Which Method?

¢ Known source solutions + superposition
— infinite / semi-infinite, simple BCs
e Separation of variables
— finite domains, classical BCs, eigenfunction expansions
¢ Laplace transform
— strong control over initial conditions, semi-infinite problems
e Numerical

— complex geometry, nonlinear D(c), complicated BCs

Summary

o Steady state Laplace equation VZc = 0 (solve by geometry)

¢ Non-steady constant-D diffusion is linear

o Key kernels: Gaussian (point source) and erfc (semi-infinite boundary)
e Separation of variables: eigenmodes decay as e~ AnDt

o Laplace transform: time derivative becomes p¢ — ¢(x,0), ODE in x

11



Next Steps

e Numerical solutions to diffusion problems
o Estimation of diffusivity from solutions
e Introduction to atomic model of diffusion
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