
MATE 664 Lecture 08
Numerical Solution To Diffusion Problems & Atomic Models for Diffusion

Dr. Tian Tian

2026-01-28

Recap of Lecture 07

Key ideas from last lecture:

• Analytical solution to diffusion problems (infinite domain)

– Semi-infinite (half-half) solution
– Line / point source solution
– Superimposition method

• Separation of variables method (finite / bounded domain)
• Laplace transform (will not be covered in exam)

Learning Outcomes

After today’s lecture, you will be able to:

• Describe detail ideas behind the numerical / finite-difference solution to diffusion
problems

• Recall basic formalism of discrete differential equation
• Apply numerical methods for diffusion problems and diffusivity extraction
• Analyze atomic origin of diffusion

Numerical Method For Diffusion Equation

In many cases the analytical solutions to a diffusion equation is hard / impossible to obtain,
due to:

• complicated B.C. I.C.s
• non-uniform or anisotropic diffusivities

1

• existing of multiple phases during diffusion
• inhomogeneous temperature distribution
• … other experimental conditions you can think of

We need numerical methods for these situations!

Finite Difference Method

For 1D problem � use the finite difference (FD) method first proposed by Euler.

FD In A Nutshell

To solve the diffusion equation, we need to discretize spatial and temporal domains into
“grids”.

2

x grid

t grid

c(i-1,j) c(i+1,j)

c(i+1,j+1)

c(i,j)

Δx

Δt

Derivatives By Finite Difference

In Fick’s second law, the required derivatives and their finite-difference approximations are
summarized below. The concentration on grid is 𝑐(𝑖, 𝑗), where 𝑖 indexes space and 𝑗 indexes
time.

derivative finite-difference approximation scheme
𝜕𝑐
𝜕𝑡

𝑐(𝑖, 𝑗 + 1) − 𝑐(𝑖, 𝑗)
Δ𝑡

forward
(time)

𝜕𝑐
𝜕𝑥

𝑐(𝑖 + 1, 𝑗) − 𝑐(𝑖 − 1, 𝑗)
2Δ𝑥

central
(space)

𝜕2𝑐
𝜕𝑥2

𝑐(𝑖 + 1, 𝑗) − 2𝑐(𝑖, 𝑗) + 𝑐(𝑖 − 1, 𝑗)
(Δ𝑥)2 central

(space)

3

Solving Diffusion Equation: Method of Lines (MOL)

Fick’s second law is PDE which is hard to integrate directly. Method of lines use the following
strategies:

• Discretize space only
• Keep time continuous
• Convert PDE into a system of ODEs in time

After spatial discretization � ODE in temporal domain

𝑑𝑐(𝑖, 𝑡)
𝑑𝑡

= 𝐷𝑐(𝑖 + 1, 𝑡) − 2𝑐(𝑖, 𝑡) + 𝑐(𝑖 − 1, 𝑡)
(Δ𝑥)2 (1)

Each spatial node 𝑖 (line) corresponds to one ODE, hence the name.

MOL Algorithm (Explicit Time Marching)

1. Define spatial grid with 𝑥𝑖 (𝑁 points), choose Δ𝑥
2. Apply boundary conditions at 𝑖 = 0 and 𝑖 = 𝑁
3. Discretize spatial derivatives using central difference
4. Obtain ODE system for 𝑐(𝑖, 𝑡)
5. Choose time step Δ𝑡
6. Advance solution in time using forward Euler:

𝑐(𝑖, 𝑗 + 1) = 𝑐(𝑖, 𝑗) + Δ𝑡 𝑑𝑐(𝑖, 𝑡)
𝑑𝑡

(2)

= 𝑐(𝑖, 𝑗) + Δ𝑡 ⋅ 𝐷𝑐(𝑖 + 1, 𝑡) − 2𝑐(𝑖, 𝑡) + 𝑐(𝑖 − 1, 𝑡)
(Δ𝑥)2 (3)

Things To Check In FD Scheme

• Grid stability condition

Δ𝑡 ≤ (Δ𝑥)2

2𝐷

• Convergence: are Δ𝑡 and Δ𝑥 small enough?

4

• Numerical precision: stiff diffusion problems (e.g. Nernst-Planck) may require higher
numerical precision

• Boundary condition implementation

• Conservation

• Solving steady state problem (Laplace problem) can be non-trivial

Implementation and Multi-Dimensional Extensions

• Open-source implementation (FD + MOL)

– Python + NumPy for spatial discretization
– scipy.integrate.solve_ivp for time integration

• Open-source PDE solvers

– Finite volume method (FVM): OpenFOAM (C++), FiPy (Python)
– Finite element method (FEM) FEniCS (Python)

• Commercial multiphysics solvers

– FEM: COMSOL Multiphysics
– FVM: ANSYS

• Development of solvers is a hot field for engineering!

Some Skeleton Code in Python

MOL can usually be implemented using pure Python in less than 20 lines (really not that
difficult!)

from scipy.integrate import solve_ivp

def rhs(t, c, D, dx):
""" Function to implement right-hand-side FD """
return delta_c_array

def apply_bc(c):
""" Function to enforce boundary conditions """
return modified_c_array

def solve_diffusion(c0, t_span, D, dx):
"""

5

high-level diffusion solver
"""
def rhs_bc(t, c):

c = apply_bc(c)
return rhs(t, c, D, dx)

sol = solve_ivp(
rhs_bc,
t_span,
c0,
method="RK45"

)
return sol

FD Numerical Method Demo

How do FD compare with analytical solution?

Estimating Diffusivity: Example 1

The first diffusivity in metal was presented in 1894 by Roberts-Austen using diffusion of Au in
liquid Pb. (See review by Mehrer and Stolwijk, Diffusion Fundamentals, 2008, 1, 1-32).

The experiment is basically a solid Au-Pd alloy cylinder diffusing into semi-infinite molten
Pd at 𝑇=492 ℃, as the geometry below. Experiment weight fraction of Au was determined
by precision scales on sections of cylinder after 𝑡 = 6.96 days. Can we verify his results of
diffusivity (𝐷̃ = 3.00 cm2d−1)?

2Δ

x

6

Roberts-Austen Experiment: Original Data & Setup

See Bakerian Lecture: On the Diffusion of Metals. Roberts-Austen

Figure 1: Roberts-Austen’s original experimental data

7

https://archive.org/details/philtrans09730582/page/n9/mode/2up

Figure 2: Setup scheme

Roberts-Austen Experiment: Fitting

More Complex Situation: Multiphase Interdiffusion

• Diffusion couple experiments often cross phase boundaries

– single-phase → two-phase → single-phase regions
– composition is no longer a single-valued function of chemical potential

Example 1: Ir–Re diffusion couple annealed at 2400°C (adapted from MIT KOM course)

• How many discontinuities?

8

More Complex Situation: Multiphase Interdiffusion

Example 2: Os-W diffusion couple annealed at 2200°C (adapted from MIT KOM course)

• How many discontinuities?
• How do we model these problems?
• See packages like pyDiffusion

Introduction to Atomic Models of Diffusion

Motivation: Predicting 𝐷 From Atomistic Simulations

• We know from experiments how to extract the 𝐷 (or 𝐷̃) very well
• But how are the diffusivities coming from atomic models?
• Can we predict 𝐷 from some calculations?

Diffusion: Bridging Atomic and Macroscopic Pictures

Two major achievements in 20th century

• Explanation of Brownian motion (Einstein)

– macroscopic diffusion emerges from random atomic motion
– link between mean-square displacement and diffusivity

• Atomic interpretation of Fick’s laws

– diffusion coefficient related to jump frequency and jump distance
– connects lattice-scale mechanisms to continuum transport equations

9

https://github.com/zhangqi-chen/pyDiffusion

Mean Squared Displacement (Brownian Motion Picture)

A particle undergoes a sequence of thermally activated jumps

• jump displacement for 𝑘-th step: ⃗𝑟𝑘
• after 𝑁𝑠 jumps, total displacement:

𝑅⃗(𝑁𝑠) =
𝑁𝑠

∑
𝑘=1

⃗𝑟𝑘

• What is the mean displacement ⟨𝑅⟩? (it’s zero!)

Mean squared displacement (MSD):

⟨𝑅2(𝑁𝑠)⟩ = ⟨𝑅⃗(𝑁𝑠) ⋅ 𝑅⃗(𝑁𝑠)⟩

MSD: Expansion and Randomness Assumption

Expand the dot product:

𝑅2(𝑁𝑠) =
𝑁𝑠

∑
𝑘=1

| ⃗𝑟𝑘|2 + 2
𝑁𝑠−1

∑
𝑘=1

𝑁𝑠

∑
𝑚=𝑘+1

⃗𝑟𝑘 ⋅ ⃗𝑟𝑚

If successive jumps are uncorrelated (random directions):

⟨ ⃗𝑟𝑘 ⋅ ⃗𝑟𝑚⟩ = 0 (𝑘 ≠ 𝑚)

Then

⟨𝑅2(𝑁𝑠)⟩ = 𝑁𝑠⟨𝑟2⟩

where ⟨𝑟2⟩ is the mean squared jump distance.

10

Random Jump MSD from Continuum Diffusion

Consider diffusion from a point source in 3D into infinite space. The concentration at each 𝑟 at
any time 𝑡 is 𝑐(𝑟, 𝑡)

Define MSD as the normalized second moment of 𝑐(𝑟, 𝑡)

⟨𝑅2(𝑡)⟩ =
∫∞
0

𝑟2 𝑐(𝑟, 𝑡) 4𝜋𝑟2 𝑑𝑟
∫∞
0

𝑐(𝑟, 𝑡) 4𝜋𝑟2 𝑑𝑟

Luckily, the solution to 𝑐(𝑟, 𝑡) was already known in 1905 as Gaussian (also from last lecture):

𝑐(𝑟, 𝑡) = 𝑁
√

4𝜋𝐷𝑡3 exp(− 𝑟2

4𝐷𝑡
), 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2

Einstein Diffusion Equation From Continuum Diffusio

Use the Gaussian form, Einstein showed for 3D random jump, we have

⟨𝑅2(𝑡)⟩ = 6𝐷𝑡

More generally in 𝑑 dimensions:

⟨𝑅2(𝑡)⟩ = 2𝑑 𝐷𝑡

• This is known as Einstein diffusion equation
• Links atomic motion (Brownian motion, < 𝑅2 >) to continuum diffusion (𝐷)

Diffusion From Random Walk Model

1D random walk with step ±1 (site index 𝑛)

Constraints after 𝑁𝜏 steps:

𝑁𝑅 − 𝑁𝐿 = 𝑛, 𝑁𝑅 + 𝑁𝐿 = 𝑁𝜏

Number of ways (binomial):

𝑈(𝑛, 𝑁𝜏) = 𝑁𝜏!
𝑁𝑅!𝑁𝐿!

11

For an unbiased walk 𝑝𝐿 = 𝑝𝑅 = 1/2:

𝑝(𝑛, 𝑁𝜏) = 𝑁𝜏!
𝑁𝑅!𝑁𝐿!

(1
2

)
𝑁𝜏

Large-step limit gives Gaussian form:

𝑝(𝑛, 𝑁𝜏) ∝ exp(− 𝑛2

2𝑁𝜏
)

Linking Random Walk to Macroscopic 𝐷

Identify:

• diffusion distance: 𝑥 ∼ 𝑛 Δ𝑥
• number of steps: 𝑁𝜏 ∼ Γ𝑡 (jump frequency Γ)

From MSD (1D):

⟨𝑥2(𝑡)⟩ = ⟨𝑛2⟩(Δ𝑥)2 ∼ 𝑁𝜏(Δ𝑥)2 ∼ Γ𝑡(Δ𝑥)2

Compare with Einstein (1D): ⟨𝑥2(𝑡)⟩ = 2𝐷𝑡

𝐷 = Γ(Δ𝑥)2

2
(in 1D)

General 𝑑-D form:

𝐷 = Γ⟨𝑟2⟩
2𝑑

Summary

• Numerical solutions to diffusion equations
• Applying numerical fitting for 𝐷
• Introducing to atomic picture of diffusivity

12

Next Steps

• Understanding the atomic model in liquid and lattices
• Complex mechanism of lattice diffusion
• Estimating 𝐷 from thermodynamic data

13

	Recap of Lecture 07
	Learning Outcomes
	Numerical Method For Diffusion Equation
	Finite Difference Method
	FD In A Nutshell
	Derivatives By Finite Difference
	Solving Diffusion Equation: Method of Lines (MOL)
	MOL Algorithm (Explicit Time Marching)
	Things To Check In FD Scheme
	Implementation and Multi-Dimensional Extensions
	Some Skeleton Code in Python
	FD Numerical Method Demo
	Estimating Diffusivity: Example 1
	Roberts-Austen Experiment: Original Data & Setup
	Roberts-Austen Experiment: Fitting
	More Complex Situation: Multiphase Interdiffusion
	More Complex Situation: Multiphase Interdiffusion
	Introduction to Atomic Models of Diffusion
	Motivation: Predicting D From Atomistic Simulations
	Diffusion: Bridging Atomic and Macroscopic Pictures
	Mean Squared Displacement (Brownian Motion Picture)
	MSD: Expansion and Randomness Assumption
	Random Jump MSD from Continuum Diffusion
	Einstein Diffusion Equation From Continuum Diffusio
	Diffusion From Random Walk Model
	Linking Random Walk to Macroscopic D
	Summary
	Next Steps

