Molecular Diffusion in Gases: General Solutions
2026-01-09
After today’s lecture, you will be able to:
General case for steady state (S.S) transport
\[ \int_{z_1}^{z_2} \frac{dz}{D_{AB} c_T} = \frac{(z_2 - z_1)}{D_{AB} c_T} \]
Using substitution \(u = N_A - x_A (N_A + N_B)\), \(d u = -(N_A + N_B)\,dx_A\)
\[\begin{align} \int_{x_{A1}}^{x_{A2}} -\dfrac{dx_A}{N_A - x_A (N_A + N_B)} &= - \cdot - \frac{1}{N_A + N_B} \ln\!\left[N_A - x_A (N_A + N_B)\right] \bigg\vert_{x_{A1}}^{x_{A2}} \\ &= \frac{1}{N_A + N_B} \ln\!\left[\dfrac{ N_A - x_{A2} (N_A + N_B)} {N_A - x_{A1} (N_A + N_B)} \right] \end{align}\]We want to solve for \(N_A\)
\[\begin{align} \frac{(z_2 - z_1)}{c_T D_{AB}} &= \frac{1}{N_A + N_B} \ln\!\left[\dfrac{ N_A - x_{A2} (N_A + N_B)} {N_A - x_{A1} (N_A + N_B)} \right] \\ N_A &= \frac{c_T D_{AB}}{(z_2 - z_1)} \frac{N_A}{N_A + N_B} \ln\!\left[\dfrac{ N_A - x_{A2} (N_A + N_B)} {N_A - x_{A1} (N_A + N_B)} \right] \end{align}\]We can gather all \(N_A / (N_A + N_B)\) in the R.H.S since it’s a constant
\[\begin{align} \boxed{ N_A = \frac{ c_T D_{AB}}{(z_2 - z_1)} \left(\frac{N_A}{N_A + N_B}\right) \% \ln\!\left[ \dfrac{\frac{N_A}{N_A + N_B} - x_{A2}} {\frac{N_A}{N_A + N_B} - x_{A1}} \right] } \end{align}\]The general solution is not applicable \(N_B = -N_A\), but we can prove \(N_B / N_A \to -1\) reduces to the EMCD equation.
This is the EMCD result!
In \(c_A\) form
General solution
\[ N_A = \frac{D_{AB} c_T}{(z_2 - z_1)} \frac{N_A}{N_A + N_B} \ln\!\left[\dfrac{ \frac{N_A}{N_A + N_B} - \frac{c_{A2}}{c_T}} {\frac{N_A}{N_A + N_B} - \frac{c_{A1}}{c_T}} \right] \]
In \(x_A\) form
General solution
\[ N_A = \frac{D_{AB} c_T}{(z_2 - z_1)} \frac{N_A}{N_A + N_B} \ln\!\left[\dfrac{ \frac{N_A}{N_A + N_B} - x_{A2}} {\frac{N_A}{N_A + N_B} - x_{A1}} \right] \]
In \(p_A\) form (ideal gas)
General solution
\[ N_A = \frac{D_{AB} p_T}{RT(z_2 - z_1)} \frac{N_A}{N_A + N_B} \ln\!\left[\dfrac{ \frac{N_A}{N_A + N_B} - x_{A2}} {\frac{N_A}{N_A + N_B} - x_{A1}} \right] \]
In all the cases we study the S.S. condition:
\[\frac{d N_A}{d z} = 0\]
For the general case \(s = N_A / (N_A + N_B)\), we have
\[\begin{align} \frac{dN_A}{dz} &= \frac{d}{dz} \left[ \frac{D_{AB} c_T}{s - x_A} \frac{d x_A}{d z}\right] = 0\\ \frac{D_{AB} c_T}{s - x_A} \frac{d x_A}{d z} &= \mathrm{Const} \end{align}\]\(x_A(z)\) has a general solution with exponential form (with \(K_1\) and \(K_2\) being constants)
\[\begin{align} \boxed{ x_{A} = s - K_1 e^{K_2 z} } \end{align}\]Using steady state condition, we need to know relation between \(N_A\) and \(N_B\) before solving the general EQ.
It depends on the system setup and mass balance.
Let’s consider the same chemical reaction of hydrogen dissociation by a solid catalst
\[\begin{align} \text{H}_2\ (A, \text{gas}) \rightarrow 2\text{H}^*\ (B, \text{gas}) \end{align}\]Case 1: reaction through a solid catalyst at bottom of a tube
Case 2: gas flow through a solid catalyst inside a tube
Take home question: - How do the flux directions affect the general solution?
Conditions for the two-bulb experiment
We can apply:
We use the mass balance of the system
\[\begin{align*} \text{[Mass In]} &= \text{[Accumulation]} \\ S \cdot J_{Az}^* &= V_2 \frac{d c_{A2}}{dt} \\ D_{AB} \frac{c_{A1} - c_{A2}}{L} \cdot S &= V_2 \frac{d c_{A2}}{dt} \end{align*}\]Since the total pressure \(p_T\) is constant, the average concentration of \(c_A\) in the system, \(c_{A, av}\) is also constant
\[\begin{align*} V_T c_{A, av} &= (V_1 + V_2)c_{A, av} \\ &= V_1c_{A1}(t=0) + V_2c_{A2}(t=0) \\ &= V_1c_{A1}(t\neq0) + V_2c_{A2}(t\neq0) \end{align*}\]We are interested in \(c_{A2}\), so substitute \(c_{A1}\) with relation to \(c_{A, av}\):
\[ c_{A1} = \frac{V_T c_{A, av} - V_2 c_{A2}}{V_1} \]
After the substitution, rearrangement and integration we get:
\[\begin{align*} \ln\!\left[ \frac{c_{A, av} - c_{A2}(t=t_e)}{c_{A, av} - c_{A2}(t=0)} \right] &= -\frac{D_{AB} V_T S}{V_1 V_2 L} \cdot t \\ \end{align*}\]We can extract \(D_{AB}\) usingt the slope of the plot!
1
\[ D_{AB} = \frac{1}{3} \overline{u} \lambda \]
\[ D_{AB} \propto \frac{T^{\frac{3}{2}}}{P} \left(\frac{1}{m_A} + \frac{1}{m_B} \right)^{\frac{1}{2}} \]
\[ D_{AB} \propto \frac{T^{1.75}}{P} \left(\frac{1}{m_A} + \frac{1}{m_B} \right)^{\frac{1}{2}} \]